import streamlit as st import pandas as pd import google.generativeai as genai import os from dotenv import load_dotenv import plotly.graph_objects as go # Load environment variables from .env file load_dotenv() # Set page configuration first st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered") # Initialize Gemini with the API key loaded from the .env file api_key = os.getenv("GOOGLE_API_KEY") if api_key: genai.configure(api_key=api_key) else: st.error("API key is missing. Please set the GOOGLE_API_KEY environment variable.") # Use better model: gemini-1.5-pro model = genai.GenerativeModel("gemini-1.5-pro") # Load solar data @st.cache_data def load_data(): df = pd.read_csv('https://huggingface.co/spaces/MLDeveloper/AI_based_Solar_Project_Estimation_Tool/resolve/main/solar_data_india_2024.csv') return df df = load_data() # UI - Form for user input st.title("AI-based Solar Project Estimation Tool") st.write("### Enter Your Details Below:") with st.form("solar_form"): state_options = df['State'].dropna().unique() location = st.selectbox("Select your State", options=sorted(state_options)) roof_size = st.number_input("Enter your roof size (in sq meters)", min_value=1) electricity_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0) submitted = st.form_submit_button("Get Estimate") # Build the clean prompt for Gemini def build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw): prompt = f""" You are a solar project estimator tool. Based on the following details, calculate and return only the values without any extra description: Location: {location} Roof size: {roof_size} sq meters Monthly electricity bill: ₹{electricity_bill} Average GHI: {ghi} kWh/m²/day Solar system cost per kW: ₹{solar_cost_per_kw} Respond strictly in this format (do not add anything extra): Estimated solar system size in kW: Estimated daily solar output in kWh: Total system cost in ₹: Monthly savings in ₹: Payback period in years: """ return prompt # Generate the solar project estimate via Gemini if submitted and location and roof_size > 0 and electricity_bill >= 0: state_data = df[df['State'].str.contains(location, case=False)].iloc[0] if state_data is not None: ghi = state_data['Avg_GHI (kWh/m²/day)'] solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)'] prompt_text = build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw) # Call Gemini API with st.spinner("Generating solar estimate with Gemini..."): response = model.generate_content(prompt_text) # Display clean structured output st.subheader("Solar Project Estimate") estimated_data = response.text.strip().split("\n") system_size_kw = None monthly_savings_rs = None total_system_cost = None for point in estimated_data: if ":" in point: try: key, value = point.split(":", 1) key = key.strip() value = value.strip() st.write(f"**{key}**: {value}") if "Estimated solar system size" in key: system_size_kw = float(value.split()[0]) if "Monthly savings" in key: monthly_savings_rs = float(value.split()[0]) if "Total system cost" in key: total_system_cost = float(value.split()[0]) except ValueError: st.warning("There was an issue processing the response.") # Show Graph if values are available if total_system_cost is not None and monthly_savings_rs is not None: st.subheader("📊 Visual Summary") fig = go.Figure(data=[ go.Bar( x=["Total System Cost (₹)", "Monthly Savings (₹)"], y=[total_system_cost, monthly_savings_rs], marker_color=['#636EFA', '#00CC96'] ) ]) fig.update_layout(title="Solar Project Financial Estimates", yaxis_title="Amount (₹)", xaxis_title="Parameters") st.plotly_chart(fig, use_container_width=True, key="solar_graph") else: st.error("Sorry, the location entered does not match any available data.") else: st.warning("Please fill out all fields to see your solar project estimate.")