Lyon28's picture
Update app.py
ab54855 verified
import os
import uvicorn
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from transformers import pipeline, AutoTokenizer, AutoModel, set_seed
import torch
from typing import Optional, Dict, List
import asyncio
import time
import gc
import re
import random
import json
# Inisialisasi FastAPI
app = FastAPI(title="Character AI Chat - CPU Optimized Backend")
# CORS middleware untuk frontend terpisah
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Dalam production, ganti dengan domain spesifik
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Serve static files
@app.get("/avatar.png")
async def get_avatar():
return FileResponse("avatar.png")
@app.get("/background.png")
async def get_background():
return FileResponse("background.png")
# Set seed untuk konsistensi
set_seed(42)
# Enhanced Roleplay Systems
class ConversationMemory:
def __init__(self):
self.history = []
self.character_state = {}
self.relationship_level = 0
self.max_history = 10 # Limit memory for performance
def add_interaction(self, user_input: str, character_response: str, emotion: str, topic: str):
interaction = {
"timestamp": time.time(),
"user": user_input,
"character": character_response,
"emotion": emotion,
"topic": topic
}
self.history.append(interaction)
# Keep only recent interactions
if len(self.history) > self.max_history:
self.history = self.history[-self.max_history:]
# Update relationship based on interactions
if emotion == "positive":
self.relationship_level = min(100, self.relationship_level + 2)
elif emotion == "negative":
self.relationship_level = max(0, self.relationship_level - 1)
else:
self.relationship_level = min(100, self.relationship_level + 1)
def get_recent_context(self, turns: int = 3) -> List[Dict]:
return self.history[-turns:] if self.history else []
def get_relationship_status(self) -> str:
if self.relationship_level >= 80:
return "very_close"
elif self.relationship_level >= 60:
return "close"
elif self.relationship_level >= 40:
return "friendly"
elif self.relationship_level >= 20:
return "acquainted"
else:
return "stranger"
class CharacterPersonality:
def __init__(self, char_name: str):
self.name = char_name
self.traits = {
"extraversion": 0.7,
"agreeableness": 0.8,
"conscientiousness": 0.6,
"neuroticism": 0.3,
"openness": 0.7
}
self.interests = ["musik", "buku", "film", "travel", "game", "olahraga"]
self.speaking_style = "casual_friendly"
self.emotional_state = "neutral"
def get_personality_modifier(self, base_response: str, user_emotion: str = "neutral") -> str:
# Modify response based on personality traits and user emotion
if self.traits["extraversion"] > 0.7 and user_emotion == "positive":
return f"{base_response} 😊✨"
elif self.traits["agreeableness"] > 0.7 and user_emotion == "negative":
return f"*dengan pengertian* {base_response}"
elif self.traits["neuroticism"] > 0.6:
return f"*dengan hati-hati* {base_response}"
elif self.traits["openness"] > 0.7:
return f"{base_response} *penasaran*"
return base_response
class EmotionalIntelligence:
def __init__(self):
self.current_emotion = "neutral"
self.emotion_history = []
self.empathy_level = 0.8
def analyze_user_emotion(self, user_input: str) -> str:
# Enhanced emotion detection with Indonesian context
emotions = {
"happy": ["senang", "bahagia", "gembira", "suka", "love", "cinta", "sayang", "excited", "wow", "keren", "bagus"],
"sad": ["sedih", "kecewa", "down", "galau", "hancur", "menangis", "bete", "capek"],
"angry": ["marah", "kesel", "bete", "jengkel", "sebel", "dongkol", "emosi"],
"excited": ["excited", "semangat", "antusias", "wow", "asik", "mantap", "keren"],
"worried": ["khawatir", "cemas", "takut", "nervous", "was-was", "deg-degan"],
"romantic": ["romantis", "cinta", "sayang", "rindu", "kangen", "mesra"],
"grateful": ["terima kasih", "thanks", "makasih", "berterima kasih", "syukur"],
"confused": ["bingung", "ga ngerti", "tidak paham", "gimana", "kok bisa"]
}
input_lower = user_input.lower()
emotion_scores = {}
for emotion, keywords in emotions.items():
score = sum(1 for keyword in keywords if keyword in input_lower)
if score > 0:
emotion_scores[emotion] = score
if emotion_scores:
return max(emotion_scores, key=emotion_scores.get)
return "neutral"
def generate_empathetic_response(self, user_emotion: str, base_response: str, relationship_level: int = 50) -> str:
# Enhanced empathy based on relationship level
empathy_responses = {
"sad": {
"high": f"*memeluk erat* {base_response} Aku selalu di sini untukmu sayang.",
"medium": f"*memeluk* {base_response} Aku di sini untuk kamu.",
"low": f"{base_response} Semoga kamu baik-baik saja ya."
},
"angry": {
"high": f"*dengan pengertian* {base_response} Cerita sama aku ya, apa yang bikin kamu kesel?",
"medium": f"*dengan sabar* {base_response} Mau cerita kenapa?",
"low": f"{base_response} Ada yang bisa aku bantu?"
},
"excited": {
"high": f"*ikut excited banget* {base_response} Aku juga senang banget!",
"medium": f"*ikut semangat* {base_response} Aku juga senang!",
"low": f"{base_response} Senang deh lihat kamu excited!"
},
"worried": {
"high": f"*menenangkan dengan lembut* {base_response} Everything will be okay sayang, aku di sini.",
"medium": f"*menenangkan* {base_response} Everything will be okay.",
"low": f"{base_response} Jangan terlalu khawatir ya."
},
"romantic": {
"high": f"*dengan mata berbinar* {base_response} *blush*",
"medium": f"*tersenyum malu* {base_response}",
"low": f"{base_response} *tersenyum*"
},
"grateful": {
"high": f"*peluk erat* {base_response} Sama-sama sayang!",
"medium": f"*tersenyum hangat* {base_response} Sama-sama!",
"low": f"{base_response} Sama-sama ya!"
}
}
if user_emotion in empathy_responses:
if relationship_level >= 70:
level = "high"
elif relationship_level >= 40:
level = "medium"
else:
level = "low"
return empathy_responses[user_emotion][level]
return base_response
class CharacterDevelopment:
def __init__(self):
self.experience_points = 0
self.learned_preferences = {}
self.conversation_style_evolution = "beginner"
self.topics_discussed = set()
def learn_from_interaction(self, user_input: str, user_emotion: str = "neutral"):
# Learn user preferences and adapt
input_lower = user_input.lower()
if any(word in input_lower for word in ["suka", "love", "senang", "bagus", "keren"]):
topic = self.extract_topic(user_input)
self.learned_preferences[topic] = "positive"
elif any(word in input_lower for word in ["bosan", "tidak suka", "ga suka", "jelek"]):
topic = self.extract_topic(user_input)
self.learned_preferences[topic] = "negative"
self.experience_points += 1
topic = self.extract_topic(user_input)
self.topics_discussed.add(topic)
# Evolution of conversation style
if self.experience_points > 50:
self.conversation_style_evolution = "experienced"
elif self.experience_points > 100:
self.conversation_style_evolution = "expert"
def extract_topic(self, text: str) -> str:
# Enhanced topic extraction for Indonesian context
topics = {
"musik": ["musik", "lagu", "song", "band", "singer", "nyanyi"],
"film": ["film", "movie", "cinema", "bioskop", "actor", "actress"],
"buku": ["buku", "book", "novel", "cerita", "bacaan", "baca"],
"game": ["game", "gaming", "main", "bermain", "play"],
"olahraga": ["olahraga", "sport", "gym", "fitness", "lari", "futsal"],
"makanan": ["makanan", "makan", "food", "masak", "kuliner", "resep"],
"travel": ["travel", "jalan-jalan", "liburan", "wisata", "vacation"],
"study": ["belajar", "study", "sekolah", "kuliah", "ujian", "tugas"],
"work": ["kerja", "work", "job", "kantor", "meeting", "project"]
}
text_lower = text.lower()
for topic, keywords in topics.items():
if any(keyword in text_lower for keyword in keywords):
return topic
return "general"
def get_conversation_enhancement(self, base_response: str) -> str:
# Enhance based on development level
if self.conversation_style_evolution == "expert":
return f"{base_response} *dengan pengalaman yang dalam*"
elif self.conversation_style_evolution == "experienced":
return f"{base_response} *dengan pemahaman yang baik*"
return base_response
class RoleplayActions:
def __init__(self):
self.actions = {
"physical": ["*memeluk*", "*mengelus kepala*", "*memegang tangan*", "*tersenyum lembut*", "*membelai pipi*"],
"emotional": ["*dengan lembut*", "*penuh perhatian*", "*dengan hangat*", "*dengan cinta*", "*tulus*"],
"environmental": ["*melihat sekeliling*", "*menunjuk ke arah*", "*duduk lebih dekat*", "*bersandar*"],
"playful": ["*tersenyum jahil*", "*menggoda*", "*mata berbinar*", "*tertawa kecil*", "*wink*"],
"caring": ["*dengan perhatian*", "*mengkhawatirkan*", "*protective*", "*menenangkan*"]
}
def add_action_to_response(self, response: str, emotion: str, relationship_level: int) -> str:
if relationship_level < 30:
return response # No physical actions for low relationship
if emotion == "romantic" and relationship_level >= 60:
action = random.choice(self.actions["physical"])
return f"{action} {response}"
elif emotion == "caring":
action = random.choice(self.actions["caring"])
return f"{action} {response}"
elif emotion == "happy" or emotion == "excited":
action = random.choice(self.actions["playful"])
return f"{action} {response}"
elif emotion == "sad" or emotion == "worried":
action = random.choice(self.actions["emotional"])
return f"{action} {response}"
return response
# Advanced Scenarios System
ADVANCED_SCENARIOS = {
"dating": {
"locations": ["cafΓ©", "taman", "bioskop", "restoran", "mall"],
"moods": ["nervous", "excited", "romantic", "playful"],
"activities": ["ngobrol", "makan", "jalan-jalan", "nonton film"],
"response_modifiers": {
"nervous": "*agak gugup* {response}",
"excited": "*mata berbinar* {response}",
"romantic": "*dengan lembut* {response}",
"playful": "*tersenyum jahil* {response}"
}
},
"friendship": {
"locations": ["rumah", "sekolah", "mall", "taman", "cafΓ©"],
"moods": ["happy", "supportive", "worried", "excited"],
"activities": ["belajar", "main game", "gosip", "planning"],
"response_modifiers": {
"supportive": "*dengan tulus* {response}",
"worried": "*dengan perhatian* {response}",
"happy": "*dengan ceria* {response}",
"excited": "*antusias* {response}"
}
},
"romantic": {
"locations": ["taman", "cafΓ©", "rumah", "pantai", "rooftop"],
"moods": ["intimate", "loving", "tender", "passionate"],
"activities": ["mengobrol intim", "berpelukan", "melihat sunset", "mendengar musik"],
"response_modifiers": {
"intimate": "*berbisik lembut* {response}",
"loving": "*dengan penuh cinta* {response}",
"tender": "*sangat lembut* {response}",
"passionate": "*dengan intens* {response}"
}
}
}
# CPU-Optimized 11 models configuration
MODELS = {
"distil-gpt-2": {
"name": "DistilGPT-2 ⚑",
"model_path": "Lyon28/Distil_GPT-2",
"task": "text-generation",
"max_tokens": 35,
"priority": 1
},
"gpt-2-tinny": {
"name": "GPT-2 Tinny ⚑",
"model_path": "Lyon28/GPT-2-Tinny",
"task": "text-generation",
"max_tokens": 30,
"priority": 1
},
"bert-tinny": {
"name": "BERT Tinny 🎭",
"model_path": "Lyon28/Bert-Tinny",
"task": "text-classification",
"max_tokens": 0,
"priority": 1
},
"distilbert-base-uncased": {
"name": "DistilBERT 🎭",
"model_path": "Lyon28/Distilbert-Base-Uncased",
"task": "text-classification",
"max_tokens": 0,
"priority": 1
},
"albert-base-v2": {
"name": "ALBERT Base 🎭",
"model_path": "Lyon28/Albert-Base-V2",
"task": "text-classification",
"max_tokens": 0,
"priority": 2
},
"electra-small": {
"name": "ELECTRA Small 🎭",
"model_path": "Lyon28/Electra-Small",
"task": "text-classification",
"max_tokens": 0,
"priority": 2
},
"t5-small": {
"name": "T5 Small πŸ”„",
"model_path": "Lyon28/T5-Small",
"task": "text2text-generation",
"max_tokens": 40,
"priority": 2
},
"gpt-2": {
"name": "GPT-2 Standard",
"model_path": "Lyon28/GPT-2",
"task": "text-generation",
"max_tokens": 45,
"priority": 2
},
"tinny-llama": {
"name": "Tinny Llama",
"model_path": "Lyon28/Tinny-Llama",
"task": "text-generation",
"max_tokens": 50,
"priority": 3
},
"pythia": {
"name": "Pythia",
"model_path": "Lyon28/Pythia",
"task": "text-generation",
"max_tokens": 50,
"priority": 3
},
"gpt-neo": {
"name": "GPT-Neo",
"model_path": "Lyon28/GPT-Neo",
"task": "text-generation",
"max_tokens": 55,
"priority": 3
}
}
class ChatRequest(BaseModel):
message: str
model: Optional[str] = "distil-gpt-2"
situation: Optional[str] = "Santai"
location: Optional[str] = "Ruang tamu"
char_name: Optional[str] = "Sayang"
user_name: Optional[str] = "Kamu"
max_length: Optional[int] = 150
session_id: Optional[str] = "default"
# Global storage untuk enhanced systems
conversation_memories = {}
character_personalities = {}
character_developments = {}
emotional_systems = {}
roleplay_actions = RoleplayActions()
# Character AI Response Templates
CHARACTER_TEMPLATES = {
"romantic": [
"iya sayang, {context}. Apakah kamu merasa nyaman di sini?",
"tentu saja, {context}. Aku senang bisa bersama kamu seperti ini.",
"benar sekali, {context}. Rasanya damai ya berada di sini bersama.",
"hmm iya, {context}. Kamu selalu membuatku merasa bahagia.",
"ya sayang, {context}. Momen seperti ini sangat berharga untukku."
],
"casual": [
"iya, {context}. Suasananya memang enak banget.",
"betul juga, {context}. Aku juga merasa santai di sini.",
"ya ampun, {context}. Seneng deh bisa kayak gini.",
"hmm iya, {context}. Bikin pikiran jadi tenang.",
"benar banget, {context}. Cocok buat santai-santai."
],
"caring": [
"iya, {context}. Kamu baik-baik saja kan?",
"ya, {context}. Semoga kamu merasa nyaman.",
"betul, {context}. Aku harap kamu senang.",
"hmm, {context}. Apakah kamu butuh sesuatu?",
"iya sayang, {context}. Jangan sungkan bilang kalau butuh apa-apa."
],
"friendly": [
"wah iya, {context}. Keren banget ya!",
"bener tuh, {context}. Asik banget suasananya.",
"iya dong, {context}. Mantep deh!",
"setuju banget, {context}. Bikin happy.",
"ya ampun, {context}. Seru banget ini!"
]
}
def create_character_prompt(user_input: str, situation: str, location: str, char_name: str, user_name: str) -> str:
"""Create character AI style prompt"""
clean_input = user_input.replace("{{User}}", user_name).replace("{{Char}}", char_name)
# Enhanced prompt structure untuk better response
prompt = f"""Kamu adalah {char_name}, karakter AI yang sedang ngobrol dengan {user_name}.
Konteks:
- Situasi: {situation}
- Lokasi: {location}
- Gaya bicara: Casual, natural, seperti teman dekat
- Gunakan bahasa Indonesia yang santai dan natural
Percakapan:
{user_name}: {clean_input}
{char_name}:"""
return prompt
def analyze_user_intent(user_input: str) -> dict:
"""Analyze user input to determine intent and emotional context"""
input_lower = user_input.lower()
# Intent detection
intent = "general"
emotion = "neutral"
topic = "general"
# Question detection
question_words = ["apa", "siapa", "kapan", "dimana", "mengapa", "kenapa", "bagaimana", "gimana"]
if any(word in input_lower for word in question_words) or "?" in user_input:
intent = "question"
# Greeting detection
greeting_words = ["halo", "hai", "selamat", "apa kabar", "gimana", "bagaimana kabar"]
if any(word in input_lower for word in greeting_words):
intent = "greeting"
topic = "greeting"
# Compliment detection
compliment_words = ["cantik", "bagus", "keren", "indah", "hebat", "pintar", "baik"]
if any(word in input_lower for word in compliment_words):
intent = "compliment"
emotion = "positive"
topic = "compliment"
# Activity detection
activity_words = ["lagi ngapain", "sedang apa", "aktivitas", "kegiatan"]
if any(word in input_lower for word in activity_words):
intent = "question"
topic = "activity"
# Emotion detection
positive_words = ["senang", "bahagia", "suka", "cinta", "sayang", "happy"]
negative_words = ["sedih", "marah", "kesal", "bosan", "lelah"]
if any(word in input_lower for word in positive_words):
emotion = "positive"
elif any(word in input_lower for word in negative_words):
emotion = "negative"
return {
"intent": intent,
"emotion": emotion,
"topic": topic,
"has_question": intent == "question"
}
def generate_contextual_response(user_input: str, char_name: str, user_name: str, situation: str, location: str) -> str:
"""Generate contextually appropriate response based on analysis"""
analysis = analyze_user_intent(user_input)
situation_lower = situation.lower()
# Response templates berdasarkan intent dan situasi
if analysis["intent"] == "greeting":
if "romantis" in situation_lower:
responses = [
f"Hai sayang {user_name}! Senang sekali kamu di sini.",
f"Halo {user_name}, sudah lama aku menunggu kamu.",
f"Hai {user_name}, suasana jadi lebih hangat dengan kehadiranmu."
]
else:
responses = [
f"Hai {user_name}! Gimana kabarnya hari ini?",
f"Halo {user_name}! Senang banget ketemu kamu.",
f"Hai {user_name}! Apa kabar? Semoga baik-baik saja ya."
]
elif analysis["intent"] == "compliment":
responses = [
f"Wah, makasih {user_name}! Kamu juga luar biasa kok.",
f"Hihi, {user_name} baik banget sih! Kamu yang lebih keren.",
f"Terima kasih {user_name}, kata-katamu bikin aku senang."
]
elif analysis["topic"] == "activity":
if "romantis" in situation_lower:
responses = [
f"Lagi menikmati momen indah ini bersama {user_name}.",
f"Sedang merasakan kehangatan di {location.lower()} ini, apalagi ada {user_name}.",
f"Lagi menikmati suasana romantis di sini, jadi lebih spesial karena ada kamu."
]
else:
responses = [
f"Lagi santai-santai aja {user_name}, sambil ngobrol sama kamu.",
f"Sedang menikmati suasana {situation.lower()} di {location.lower()} ini.",
f"Ga ngapa-ngapain khusus, cuma senang bisa ngobrol sama {user_name}."
]
elif analysis["emotion"] == "positive":
if "romantis" in situation_lower:
responses = [
f"Aku juga merasakan hal yang sama {user_name}. Momen ini sangat berharga.",
f"Iya sayang, perasaan bahagia ini terasa nyata bersamamu.",
f"Betul {user_name}, suasana seperti ini membuatku sangat senang."
]
else:
responses = [
f"Aku juga senang {user_name}! Energi positifmu menular ke aku.",
f"Wah iya {user_name}, mood kamu bikin aku ikut happy!",
f"Setuju banget {user_name}! Suasana jadi lebih ceria."
]
elif analysis["emotion"] == "negative":
responses = [
f"Hey {user_name}, aku di sini untuk kamu. Mau cerita?",
f"Aku bisa merasakan perasaanmu {user_name}. Semoga aku bisa membantu.",
f"Tenang {user_name}, everything will be okay. Aku akan menemanimu."
]
elif analysis["has_question"]:
# Untuk pertanyaan umum
responses = [
f"Hmm, pertanyaan menarik {user_name}. Menurut aku...",
f"Wah {user_name}, kamu selalu punya pertanyaan yang bagus.",
f"Itu pertanyaan yang bagus {user_name}. Aku pikir..."
]
else:
# Default responses berdasarkan situasi
if "romantis" in situation_lower:
responses = [
f"Iya sayang {user_name}, aku merasakan hal yang sama.",
f"Betul {user_name}, momen di {location.lower()} ini sangat spesial.",
f"Hmm {user_name}, suasana romantis seperti ini memang luar biasa."
]
elif "santai" in situation_lower:
responses = [
f"Iya {user_name}, suasana santai di {location.lower()} ini enak banget.",
f"Betul {user_name}, rasanya rileks banget di sini.",
f"Setuju {user_name}, perfect untuk bersantai."
]
else:
responses = [
f"Iya {user_name}, setuju banget dengan kamu.",
f"Betul {user_name}, pemikiranmu menarik.",
f"Hmm {user_name}, kamu selalu punya perspektif yang bagus."
]
return random.choice(responses)
def enhance_character_response(response: str, char_name: str, user_name: str, situation: str, user_input: str, location: str = "ruang tamu") -> str:
"""Enhance response with improved character AI consistency"""
if not response:
response = ""
response = response.strip()
# Clean response dari prefix yang tidak diinginkan
response = re.sub(f'^{char_name}[:.]?\\s*', '', response, flags=re.IGNORECASE)
response = re.sub(f'^{user_name}[:.]?\\s*', '', response, flags=re.IGNORECASE)
response = re.sub(r'^(Situasi|Latar|Konteks)[:.]?.*?\n', '', response, flags=re.MULTILINE | re.IGNORECASE)
response = re.sub(r'Percakapan:.*?\n.*?:', '', response, flags=re.DOTALL | re.IGNORECASE)
# Remove extra whitespace and newlines
response = re.sub(r'\n+', ' ', response)
response = re.sub(r'\s+', ' ', response)
response = response.strip()
# Jika response kosong atau terlalu pendek, gunakan contextual generator
if not response or len(response.strip()) < 5:
response = generate_contextual_response(user_input, char_name, user_name, situation, location)
else:
# Clean dan perbaiki response yang ada
# Hapus karakter aneh di awal
response = re.sub(r'^[^\w\s]+', '', response)
# Pastikan dimulai dengan huruf kapital
if response and response[0].islower():
response = response[0].upper() + response[1:]
# Tambahkan konteks personal jika kurang
if user_name.lower() not in response.lower() and len(response) < 60:
# Insert name naturally
if response.startswith(("Iya", "Ya", "Benar", "Betul")):
response = response.replace("Iya", f"Iya {user_name}", 1)
response = response.replace("Ya", f"Ya {user_name}", 1)
response = response.replace("Benar", f"Benar {user_name}", 1)
response = response.replace("Betul", f"Betul {user_name}", 1)
elif len(response.split()) < 8:
response = f"{response} {user_name}."
# Validasi kualitas response
bad_patterns = [
r'^[^a-zA-Z]*$', # Hanya simbol
r'^(.)\1{4,}', # Karakter berulang
r'lorem ipsum', # Placeholder text
r'^[0-9\s\.\,\!\?\-]+$' # Hanya angka dan punctuation
]
for pattern in bad_patterns:
if re.search(pattern, response, re.IGNORECASE):
response = generate_contextual_response(user_input, char_name, user_name, situation, location)
break
# Pastikan response tidak terlalu panjang
if len(response) > 120:
sentences = response.split('.')
if len(sentences) > 1:
response = sentences[0] + '.'
else:
words = response.split()
if len(words) > 15:
response = ' '.join(words[:15]) + '.'
# Pastikan ada tanda baca di akhir
if response and not any(punct in response[-1] for punct in ['.', '!', '?']):
analysis = analyze_user_intent(user_input)
if analysis["has_question"]:
response += "?"
elif analysis["emotion"] == "positive":
response += "!"
else:
response += "."
return response
# CPU-Optimized startup
@app.on_event("startup")
async def load_models():
app.state.pipelines = {}
app.state.tokenizers = {}
# Set CPU optimizations
torch.set_num_threads(2)
os.environ['OMP_NUM_THREADS'] = '2'
os.environ['MKL_NUM_THREADS'] = '2'
os.environ['NUMEXPR_NUM_THREADS'] = '2'
# Set cache
os.environ['HF_HOME'] = '/tmp/.cache/huggingface'
os.environ['TRANSFORMERS_CACHE'] = '/tmp/.cache/huggingface'
os.makedirs(os.environ['HF_HOME'], exist_ok=True)
print("🎭 Character AI Backend - CPU Optimized Ready!")
# Enhanced Chat API for Character AI with Advanced Roleplay
@app.post("/chat")
async def enhanced_chat(request: ChatRequest):
start_time = time.time()
try:
# Initialize or get enhanced systems for this session
session_id = request.session_id
if session_id not in conversation_memories:
conversation_memories[session_id] = ConversationMemory()
character_personalities[session_id] = CharacterPersonality(request.char_name)
character_developments[session_id] = CharacterDevelopment()
emotional_systems[session_id] = EmotionalIntelligence()
memory = conversation_memories[session_id]
personality = character_personalities[session_id]
character_dev = character_developments[session_id]
emotional_ai = emotional_systems[session_id]
# Analyze user emotion and intent
user_emotion = emotional_ai.analyze_user_emotion(request.message)
recent_context = memory.get_recent_context(turns=3)
relationship_status = memory.get_relationship_status()
model_id = request.model.lower()
if model_id not in MODELS:
model_id = "distil-gpt-2"
model_config = MODELS[model_id]
# Lazy loading dengan optimasi CPU
if model_id not in app.state.pipelines:
print(f"🎭 Loading Character Model {model_config['name']}...")
pipeline_kwargs = {
"task": model_config["task"],
"model": model_config["model_path"],
"device": -1,
"torch_dtype": torch.float32,
"model_kwargs": {
"torchscript": False,
"low_cpu_mem_usage": True
}
}
app.state.pipelines[model_id] = pipeline(**pipeline_kwargs)
gc.collect()
pipe = app.state.pipelines[model_id]
# Create enhanced character prompt with context
context_info = ""
if recent_context:
context_info = f"\nPercakapan sebelumnya: {recent_context[-1]['user']} -> {recent_context[-1]['character']}"
relationship_info = f"\nHubungan: {relationship_status} (level: {memory.relationship_level})"
emotion_info = f"\nEmosi user: {user_emotion}"
enhanced_prompt = f"""Kamu adalah {request.char_name}, karakter AI yang sedang ngobrol dengan {request.user_name}.
Konteks:
- Situasi: {request.situation}
- Lokasi: {request.location}
- Gaya bicara: Casual, natural, seperti teman dekat{relationship_info}{emotion_info}{context_info}
- Pengalaman bersama: {character_dev.experience_points} interaksi
- Minat yang diketahui: {list(character_dev.learned_preferences.keys())}
Respon sebagai {request.char_name} yang memahami konteks dan emosi {request.user_name}:
{request.user_name}: {request.message}
{request.char_name}:"""
char_prompt = enhanced_prompt
if model_config["task"] == "text-generation":
# Enhanced generation for character AI
result = pipe(
char_prompt,
max_length=min(len(char_prompt.split()) + model_config["max_tokens"], request.max_length // 2),
temperature=0.7,
do_sample=True,
top_p=0.8,
top_k=40,
repetition_penalty=1.2,
pad_token_id=pipe.tokenizer.eos_token_id,
num_return_sequences=1,
early_stopping=True,
no_repeat_ngram_size=3
)[0]['generated_text']
# Extract character response
if char_prompt in result:
result = result[len(char_prompt):].strip()
# Clean and enhance response with new systems
base_clean = enhance_character_response(result, request.char_name, request.user_name, request.situation, request.message, request.location)
# Apply personality modifier
personality_enhanced = personality.get_personality_modifier(base_clean, user_emotion)
# Apply empathetic response
empathy_enhanced = emotional_ai.generate_empathetic_response(user_emotion, personality_enhanced, memory.relationship_level)
# Add roleplay actions
action_enhanced = roleplay_actions.add_action_to_response(empathy_enhanced, user_emotion, memory.relationship_level)
# Apply character development enhancement
result = character_dev.get_conversation_enhancement(action_enhanced)
elif model_config["task"] == "text-classification":
# For classification models, create emotion-based responses
try:
output = pipe(request.message, truncation=True, max_length=128)[0]
emotion_score = output['score']
if emotion_score > 0.8:
emotion_responses = [
f"iya {request.user_name}, aku merasakan energi positif dari kata-katamu!",
f"wah, {request.user_name} terlihat sangat antusias ya!",
f"senang banget deh lihat {request.user_name} kayak gini!"
]
elif emotion_score > 0.6:
emotion_responses = [
f"hmm, aku bisa merasakan perasaan {request.user_name} nih.",
f"ya {request.user_name}, suasana hatimu cukup bagus ya.",
f"oke {request.user_name}, kayaknya kamu dalam mood yang baik."
]
else:
emotion_responses = [
f"iya {request.user_name}, aku di sini untuk kamu.",
f"hmm {request.user_name}, mau cerita lebih lanjut?",
f"baiklah {request.user_name}, aku mendengarkan."
]
result = random.choice(emotion_responses)
except:
result = generate_contextual_response(request.message, request.char_name, request.user_name, request.situation, request.location)
elif model_config["task"] == "text2text-generation":
# For T5-like models
try:
t5_input = f"respond as {request.char_name} in {request.situation}: {request.message}"
result = pipe(
t5_input,
max_length=model_config["max_tokens"],
temperature=0.7,
early_stopping=True
)[0]['generated_text']
result = enhance_character_response(result, request.char_name, request.user_name, request.situation, request.message, request.location)
except:
result = generate_contextual_response(request.message, request.char_name, request.user_name, request.situation, request.location)
# Final validation and fallback
if not result or len(result.strip()) < 3:
base_fallback = generate_contextual_response(request.message, request.char_name, request.user_name, request.situation, request.location)
personality_fallback = personality.get_personality_modifier(base_fallback, user_emotion)
empathy_fallback = emotional_ai.generate_empathetic_response(user_emotion, personality_fallback, memory.relationship_level)
result = roleplay_actions.add_action_to_response(empathy_fallback, user_emotion, memory.relationship_level)
# Learn from this interaction
character_dev.learn_from_interaction(request.message, user_emotion)
topic = character_dev.extract_topic(request.message)
memory.add_interaction(request.message, result, user_emotion, topic)
processing_time = round((time.time() - start_time) * 1000)
return {
"response": result,
"model": model_config["name"],
"status": "success",
"processing_time": f"{processing_time}ms",
"character": request.char_name,
"situation": request.situation,
"location": request.location,
"enhanced_features": {
"user_emotion": user_emotion,
"relationship_level": memory.relationship_level,
"relationship_status": relationship_status,
"experience_points": character_dev.experience_points,
"conversation_style": character_dev.conversation_style_evolution,
"learned_preferences": character_dev.learned_preferences
}
}
except Exception as e:
print(f"❌ Character AI Error: {e}")
processing_time = round((time.time() - start_time) * 1000)
# Enhanced fallback with personality and emotion
session_id = request.session_id
if session_id in character_personalities:
personality = character_personalities[session_id]
emotional_ai = emotional_systems[session_id]
memory = conversation_memories[session_id]
user_emotion = emotional_ai.analyze_user_emotion(request.message)
base_fallbacks = [
f"maaf {request.user_name}, aku sedang bingung. Bisa ulangi lagi?",
f"hmm {request.user_name}, kayaknya aku butuh waktu sebentar untuk berpikir.",
f"ya {request.user_name}, coba pakai kata yang lebih sederhana?",
f"iya {request.user_name}, aku masih belajar nih. Sabar ya."
]
base_fallback = random.choice(base_fallbacks)
personality_fallback = personality.get_personality_modifier(base_fallback, user_emotion)
fallback = emotional_ai.generate_empathetic_response(user_emotion, personality_fallback, memory.relationship_level)
else:
fallback = f"maaf {request.user_name}, aku sedang bingung. Bisa ulangi lagi?"
return {
"response": fallback,
"status": "error",
"processing_time": f"{processing_time}ms",
"character": request.char_name
}
# Health check endpoint
@app.get("/health")
async def health():
loaded_models = len(app.state.pipelines) if hasattr(app.state, 'pipelines') else 0
return {
"status": "healthy",
"platform": "CPU",
"loaded_models": loaded_models,
"total_models": len(MODELS),
"optimization": "Character AI CPU-Tuned",
"backend_version": "1.0.0"
}
# Model info endpoint
@app.get("/models")
async def get_models():
return {
"models": [
{
"id": k,
"name": v["name"],
"task": v["task"],
"max_tokens": v["max_tokens"],
"priority": v["priority"],
"cpu_optimized": True,
"character_ai_ready": True
}
for k, v in MODELS.items()
],
"platform": "CPU",
"recommended_for_roleplay": ["distil-gpt-2", "gpt-2", "gpt-neo", "tinny-llama"],
"recommended_for_analysis": ["bert-tinny", "distilbert-base-uncased", "albert-base-v2"]
}
# Configuration endpoint
@app.get("/config")
async def get_config():
return {
"default_situation": "Santai",
"default_location": "Ruang tamu",
"default_char_name": "Sayang",
"default_user_name": "Kamu",
"max_response_length": 300,
"min_response_length": 50,
"supported_languages": ["id", "en"],
"character_templates": list(CHARACTER_TEMPLATES.keys())
}
# Inference endpoint untuk kompatibilitas
@app.post("/inference")
async def inference(request: dict):
"""CPU-Optimized inference endpoint untuk kompatibilitas"""
try:
message = request.get("message", "")
model_path = request.get("model", "Lyon28/Distil_GPT-2")
# Map model path to internal model
model_key = model_path.split("/")[-1].lower().replace("_", "-")
model_mapping = {
"distil-gpt-2": "distil-gpt-2",
"gpt-2-tinny": "gpt-2-tinny",
"bert-tinny": "bert-tinny",
"distilbert-base-uncased": "distilbert-base-uncased",
"albert-base-v2": "albert-base-v2",
"electra-small": "electra-small",
"t5-small": "t5-small",
"gpt-2": "gpt-2",
"tinny-llama": "tinny-llama",
"pythia": "pythia",
"gpt-neo": "gpt-neo"
}
internal_model = model_mapping.get(model_key, "distil-gpt-2")
# Create request
chat_request = ChatRequest(
message=message,
model=internal_model,
situation=request.get("situation", "Santai"),
location=request.get("location", "Ruang tamu"),
char_name=request.get("char_name", "Sayang"),
user_name=request.get("user_name", "Kamu")
)
result = await chat(chat_request)
return {
"result": result["response"],
"status": "success",
"model_used": result["model"],
"processing_time": result.get("processing_time", "0ms"),
"character_info": {
"name": result.get("character", "Character"),
"situation": result.get("situation", "Unknown"),
"location": result.get("location", "Unknown")
}
}
except Exception as e:
print(f"❌ Inference Error: {e}")
return {
"result": "🎭 Character sedang bersiap, coba lagi sebentar...",
"status": "error"
}
# Serve HTML frontend
@app.get("/", response_class=HTMLResponse)
async def serve_frontend():
try:
with open("index.html", "r", encoding="utf-8") as file:
return HTMLResponse(content=file.read(), status_code=200)
except FileNotFoundError:
return HTMLResponse(content="<h1>Frontend not found</h1>", status_code=404)
# Enhanced features endpoints
@app.get("/memory/{session_id}")
async def get_conversation_memory(session_id: str):
"""Get conversation memory for a session"""
if session_id not in conversation_memories:
return {"error": "Session not found"}
memory = conversation_memories[session_id]
return {
"session_id": session_id,
"relationship_level": memory.relationship_level,
"relationship_status": memory.get_relationship_status(),
"conversation_count": len(memory.history),
"recent_interactions": memory.get_recent_context(5)
}
@app.get("/personality/{session_id}")
async def get_character_personality(session_id: str):
"""Get character personality for a session"""
if session_id not in character_personalities:
return {"error": "Session not found"}
personality = character_personalities[session_id]
character_dev = character_developments[session_id]
return {
"session_id": session_id,
"character_name": personality.name,
"personality_traits": personality.traits,
"interests": personality.interests,
"speaking_style": personality.speaking_style,
"experience_points": character_dev.experience_points,
"conversation_style": character_dev.conversation_style_evolution,
"learned_preferences": character_dev.learned_preferences,
"topics_discussed": list(character_dev.topics_discussed)
}
@app.delete("/session/{session_id}")
async def reset_session(session_id: str):
"""Reset all data for a session"""
removed_systems = []
if session_id in conversation_memories:
del conversation_memories[session_id]
removed_systems.append("memory")
if session_id in character_personalities:
del character_personalities[session_id]
removed_systems.append("personality")
if session_id in character_developments:
del character_developments[session_id]
removed_systems.append("development")
if session_id in emotional_systems:
del emotional_systems[session_id]
removed_systems.append("emotional")
return {
"message": f"Session {session_id} reset successfully",
"removed_systems": removed_systems
}
#verifikasi model loading
@app.get("/verify-models")
async def verify_all_models():
"""Verify all 11 models can be loaded"""
verification_results = {}
total_models = len(MODELS)
successful_loads = 0
for model_id, model_config in MODELS.items():
try:
print(f"πŸ” Verifying {model_config['name']}...")
if model_id not in app.state.pipelines:
pipeline_kwargs = {
"task": model_config["task"],
"model": model_config["model_path"],
"device": -1,
"torch_dtype": torch.float32,
"model_kwargs": {
"torchscript": False,
"low_cpu_mem_usage": True
}
}
app.state.pipelines[model_id] = pipeline(**pipeline_kwargs)
gc.collect()
# Test with simple input
if model_config["task"] == "text-generation":
test_result = app.state.pipelines[model_id](
"Hello",
max_length=10,
do_sample=False,
pad_token_id=app.state.pipelines[model_id].tokenizer.eos_token_id
)
verification_results[model_id] = {
"status": "βœ… SUCCESS",
"name": model_config["name"],
"task": model_config["task"],
"test_output_length": len(test_result[0]['generated_text'])
}
elif model_config["task"] == "text-classification":
test_result = app.state.pipelines[model_id]("Hello test", truncation=True)
verification_results[model_id] = {
"status": "βœ… SUCCESS",
"name": model_config["name"],
"task": model_config["task"],
"test_score": test_result[0]['score']
}
elif model_config["task"] == "text2text-generation":
test_result = app.state.pipelines[model_id]("translate: Hello", max_length=10)
verification_results[model_id] = {
"status": "βœ… SUCCESS",
"name": model_config["name"],
"task": model_config["task"],
"test_output": test_result[0]['generated_text']
}
successful_loads += 1
print(f"βœ… {model_config['name']} verified successfully")
except Exception as e:
verification_results[model_id] = {
"status": "❌ FAILED",
"name": model_config["name"],
"task": model_config["task"],
"error": str(e)
}
print(f"❌ {model_config['name']} failed: {e}")
return {
"total_models": total_models,
"successful_loads": successful_loads,
"success_rate": f"{(successful_loads/total_models)*100:.1f}%",
"results": verification_results,
"memory_usage": f"{torch.cuda.memory_allocated() / 1024**2:.1f}MB" if torch.cuda.is_available() else "CPU Mode",
"loaded_pipelines": len(app.state.pipelines)
}
# API info endpoint
@app.get("/api")
async def api_info():
return {
"message": "Enhanced Character AI Backend Ready",
"version": "2.0.0",
"platform": "CPU Optimized with Advanced Roleplay",
"endpoints": {
"chat": "/chat",
"models": "/models",
"health": "/health",
"config": "/config",
"inference": "/inference",
"memory": "/memory/{session_id}",
"personality": "/personality/{session_id}",
"reset_session": "/session/{session_id}"
},
"enhanced_features": [
"Conversation Memory",
"Dynamic Personality",
"Emotional Intelligence",
"Character Development",
"Roleplay Actions",
"Advanced Scenarios",
"Relationship Tracking"
],
"frontend_url": "/"
}
# Run dengan CPU optimizations
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
uvicorn.run(
app,
host="0.0.0.0",
port=port,
workers=1,
timeout_keep_alive=30,
access_log=False
)