Spaces:
Running
Running
File size: 48,837 Bytes
3d635c7 138b76f a0ad28c 83e2658 cc603f7 bc44dae 0db9e1d bc44dae 2b11be3 0db9e1d a0ad28c 2b11be3 bc44dae 3d635c7 a0ad28c bc44dae 83e2658 cc603f7 83e2658 cc603f7 0db9e1d 2b11be3 0db9e1d 3d635c7 0db9e1d a0ad28c 2c15096 3d635c7 0db9e1d a0ad28c 0db9e1d 3d635c7 a0ad28c 3d635c7 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d 3d635c7 a0ad28c 3d635c7 0db9e1d a0ad28c 0db9e1d 3d635c7 0db9e1d 3d635c7 0db9e1d a0ad28c 0db9e1d 3d635c7 138b76f 0db9e1d 138b76f 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d 3d635c7 0db9e1d a0ad28c 0db9e1d 3d635c7 bc44dae 3d635c7 a0ad28c 0db9e1d a0ad28c 2b11be3 a0ad28c 2c15096 a0ad28c 5510964 a0ad28c 5510964 a0ad28c 2b11be3 5510964 a0ad28c 5510964 a0ad28c 5510964 a0ad28c 5510964 a0ad28c 2b11be3 5510964 a0ad28c 5510964 2b11be3 a0ad28c 5510964 2b11be3 a0ad28c 5510964 2b11be3 5510964 2b11be3 5510964 2b11be3 5510964 a0ad28c bc44dae 0db9e1d bc44dae a0ad28c 138b76f a0ad28c 0db9e1d 2c15096 0db9e1d 138b76f 0db9e1d 3e4c841 0db9e1d a0ad28c 3e4c841 2b11be3 3d635c7 2b11be3 0db9e1d 3d635c7 2b11be3 3d635c7 a0ad28c 3d635c7 138b76f bc44dae a0ad28c 138b76f a0ad28c 138b76f 0db9e1d a0ad28c 2c15096 0db9e1d a0ad28c 0db9e1d bc44dae 138b76f bc44dae 2b11be3 a0ad28c 138b76f a0ad28c 5510964 138b76f 5510964 a0ad28c 0db9e1d 5510964 a0ad28c 138b76f a0ad28c 138b76f 2b11be3 a0ad28c 2b11be3 a0ad28c 138b76f a0ad28c 2b11be3 a0ad28c 2b11be3 0db9e1d 2b11be3 a0ad28c 2b11be3 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 2b11be3 0db9e1d a0ad28c 0db9e1d 2b11be3 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d 24088e0 a0ad28c 3d635c7 a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 0db9e1d a0ad28c 83e2658 2b11be3 ab54855 83e2658 2b11be3 83e2658 2b11be3 83e2658 2b11be3 83e2658 a0ad28c 3d635c7 57e7de2 0db9e1d 2c15096 a0ad28c 2c15096 0db9e1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 |
import os
import uvicorn
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from transformers import pipeline, AutoTokenizer, AutoModel, set_seed
import torch
from typing import Optional, Dict, List
import asyncio
import time
import gc
import re
import random
import json
# Inisialisasi FastAPI
app = FastAPI(title="Character AI Chat - CPU Optimized Backend")
# CORS middleware untuk frontend terpisah
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Dalam production, ganti dengan domain spesifik
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Serve static files
@app.get("/avatar.png")
async def get_avatar():
return FileResponse("avatar.png")
@app.get("/background.png")
async def get_background():
return FileResponse("background.png")
# Set seed untuk konsistensi
set_seed(42)
# Enhanced Roleplay Systems
class ConversationMemory:
def __init__(self):
self.history = []
self.character_state = {}
self.relationship_level = 0
self.max_history = 10 # Limit memory for performance
def add_interaction(self, user_input: str, character_response: str, emotion: str, topic: str):
interaction = {
"timestamp": time.time(),
"user": user_input,
"character": character_response,
"emotion": emotion,
"topic": topic
}
self.history.append(interaction)
# Keep only recent interactions
if len(self.history) > self.max_history:
self.history = self.history[-self.max_history:]
# Update relationship based on interactions
if emotion == "positive":
self.relationship_level = min(100, self.relationship_level + 2)
elif emotion == "negative":
self.relationship_level = max(0, self.relationship_level - 1)
else:
self.relationship_level = min(100, self.relationship_level + 1)
def get_recent_context(self, turns: int = 3) -> List[Dict]:
return self.history[-turns:] if self.history else []
def get_relationship_status(self) -> str:
if self.relationship_level >= 80:
return "very_close"
elif self.relationship_level >= 60:
return "close"
elif self.relationship_level >= 40:
return "friendly"
elif self.relationship_level >= 20:
return "acquainted"
else:
return "stranger"
class CharacterPersonality:
def __init__(self, char_name: str):
self.name = char_name
self.traits = {
"extraversion": 0.7,
"agreeableness": 0.8,
"conscientiousness": 0.6,
"neuroticism": 0.3,
"openness": 0.7
}
self.interests = ["musik", "buku", "film", "travel", "game", "olahraga"]
self.speaking_style = "casual_friendly"
self.emotional_state = "neutral"
def get_personality_modifier(self, base_response: str, user_emotion: str = "neutral") -> str:
# Modify response based on personality traits and user emotion
if self.traits["extraversion"] > 0.7 and user_emotion == "positive":
return f"{base_response} πβ¨"
elif self.traits["agreeableness"] > 0.7 and user_emotion == "negative":
return f"*dengan pengertian* {base_response}"
elif self.traits["neuroticism"] > 0.6:
return f"*dengan hati-hati* {base_response}"
elif self.traits["openness"] > 0.7:
return f"{base_response} *penasaran*"
return base_response
class EmotionalIntelligence:
def __init__(self):
self.current_emotion = "neutral"
self.emotion_history = []
self.empathy_level = 0.8
def analyze_user_emotion(self, user_input: str) -> str:
# Enhanced emotion detection with Indonesian context
emotions = {
"happy": ["senang", "bahagia", "gembira", "suka", "love", "cinta", "sayang", "excited", "wow", "keren", "bagus"],
"sad": ["sedih", "kecewa", "down", "galau", "hancur", "menangis", "bete", "capek"],
"angry": ["marah", "kesel", "bete", "jengkel", "sebel", "dongkol", "emosi"],
"excited": ["excited", "semangat", "antusias", "wow", "asik", "mantap", "keren"],
"worried": ["khawatir", "cemas", "takut", "nervous", "was-was", "deg-degan"],
"romantic": ["romantis", "cinta", "sayang", "rindu", "kangen", "mesra"],
"grateful": ["terima kasih", "thanks", "makasih", "berterima kasih", "syukur"],
"confused": ["bingung", "ga ngerti", "tidak paham", "gimana", "kok bisa"]
}
input_lower = user_input.lower()
emotion_scores = {}
for emotion, keywords in emotions.items():
score = sum(1 for keyword in keywords if keyword in input_lower)
if score > 0:
emotion_scores[emotion] = score
if emotion_scores:
return max(emotion_scores, key=emotion_scores.get)
return "neutral"
def generate_empathetic_response(self, user_emotion: str, base_response: str, relationship_level: int = 50) -> str:
# Enhanced empathy based on relationship level
empathy_responses = {
"sad": {
"high": f"*memeluk erat* {base_response} Aku selalu di sini untukmu sayang.",
"medium": f"*memeluk* {base_response} Aku di sini untuk kamu.",
"low": f"{base_response} Semoga kamu baik-baik saja ya."
},
"angry": {
"high": f"*dengan pengertian* {base_response} Cerita sama aku ya, apa yang bikin kamu kesel?",
"medium": f"*dengan sabar* {base_response} Mau cerita kenapa?",
"low": f"{base_response} Ada yang bisa aku bantu?"
},
"excited": {
"high": f"*ikut excited banget* {base_response} Aku juga senang banget!",
"medium": f"*ikut semangat* {base_response} Aku juga senang!",
"low": f"{base_response} Senang deh lihat kamu excited!"
},
"worried": {
"high": f"*menenangkan dengan lembut* {base_response} Everything will be okay sayang, aku di sini.",
"medium": f"*menenangkan* {base_response} Everything will be okay.",
"low": f"{base_response} Jangan terlalu khawatir ya."
},
"romantic": {
"high": f"*dengan mata berbinar* {base_response} *blush*",
"medium": f"*tersenyum malu* {base_response}",
"low": f"{base_response} *tersenyum*"
},
"grateful": {
"high": f"*peluk erat* {base_response} Sama-sama sayang!",
"medium": f"*tersenyum hangat* {base_response} Sama-sama!",
"low": f"{base_response} Sama-sama ya!"
}
}
if user_emotion in empathy_responses:
if relationship_level >= 70:
level = "high"
elif relationship_level >= 40:
level = "medium"
else:
level = "low"
return empathy_responses[user_emotion][level]
return base_response
class CharacterDevelopment:
def __init__(self):
self.experience_points = 0
self.learned_preferences = {}
self.conversation_style_evolution = "beginner"
self.topics_discussed = set()
def learn_from_interaction(self, user_input: str, user_emotion: str = "neutral"):
# Learn user preferences and adapt
input_lower = user_input.lower()
if any(word in input_lower for word in ["suka", "love", "senang", "bagus", "keren"]):
topic = self.extract_topic(user_input)
self.learned_preferences[topic] = "positive"
elif any(word in input_lower for word in ["bosan", "tidak suka", "ga suka", "jelek"]):
topic = self.extract_topic(user_input)
self.learned_preferences[topic] = "negative"
self.experience_points += 1
topic = self.extract_topic(user_input)
self.topics_discussed.add(topic)
# Evolution of conversation style
if self.experience_points > 50:
self.conversation_style_evolution = "experienced"
elif self.experience_points > 100:
self.conversation_style_evolution = "expert"
def extract_topic(self, text: str) -> str:
# Enhanced topic extraction for Indonesian context
topics = {
"musik": ["musik", "lagu", "song", "band", "singer", "nyanyi"],
"film": ["film", "movie", "cinema", "bioskop", "actor", "actress"],
"buku": ["buku", "book", "novel", "cerita", "bacaan", "baca"],
"game": ["game", "gaming", "main", "bermain", "play"],
"olahraga": ["olahraga", "sport", "gym", "fitness", "lari", "futsal"],
"makanan": ["makanan", "makan", "food", "masak", "kuliner", "resep"],
"travel": ["travel", "jalan-jalan", "liburan", "wisata", "vacation"],
"study": ["belajar", "study", "sekolah", "kuliah", "ujian", "tugas"],
"work": ["kerja", "work", "job", "kantor", "meeting", "project"]
}
text_lower = text.lower()
for topic, keywords in topics.items():
if any(keyword in text_lower for keyword in keywords):
return topic
return "general"
def get_conversation_enhancement(self, base_response: str) -> str:
# Enhance based on development level
if self.conversation_style_evolution == "expert":
return f"{base_response} *dengan pengalaman yang dalam*"
elif self.conversation_style_evolution == "experienced":
return f"{base_response} *dengan pemahaman yang baik*"
return base_response
class RoleplayActions:
def __init__(self):
self.actions = {
"physical": ["*memeluk*", "*mengelus kepala*", "*memegang tangan*", "*tersenyum lembut*", "*membelai pipi*"],
"emotional": ["*dengan lembut*", "*penuh perhatian*", "*dengan hangat*", "*dengan cinta*", "*tulus*"],
"environmental": ["*melihat sekeliling*", "*menunjuk ke arah*", "*duduk lebih dekat*", "*bersandar*"],
"playful": ["*tersenyum jahil*", "*menggoda*", "*mata berbinar*", "*tertawa kecil*", "*wink*"],
"caring": ["*dengan perhatian*", "*mengkhawatirkan*", "*protective*", "*menenangkan*"]
}
def add_action_to_response(self, response: str, emotion: str, relationship_level: int) -> str:
if relationship_level < 30:
return response # No physical actions for low relationship
if emotion == "romantic" and relationship_level >= 60:
action = random.choice(self.actions["physical"])
return f"{action} {response}"
elif emotion == "caring":
action = random.choice(self.actions["caring"])
return f"{action} {response}"
elif emotion == "happy" or emotion == "excited":
action = random.choice(self.actions["playful"])
return f"{action} {response}"
elif emotion == "sad" or emotion == "worried":
action = random.choice(self.actions["emotional"])
return f"{action} {response}"
return response
# Advanced Scenarios System
ADVANCED_SCENARIOS = {
"dating": {
"locations": ["cafΓ©", "taman", "bioskop", "restoran", "mall"],
"moods": ["nervous", "excited", "romantic", "playful"],
"activities": ["ngobrol", "makan", "jalan-jalan", "nonton film"],
"response_modifiers": {
"nervous": "*agak gugup* {response}",
"excited": "*mata berbinar* {response}",
"romantic": "*dengan lembut* {response}",
"playful": "*tersenyum jahil* {response}"
}
},
"friendship": {
"locations": ["rumah", "sekolah", "mall", "taman", "cafΓ©"],
"moods": ["happy", "supportive", "worried", "excited"],
"activities": ["belajar", "main game", "gosip", "planning"],
"response_modifiers": {
"supportive": "*dengan tulus* {response}",
"worried": "*dengan perhatian* {response}",
"happy": "*dengan ceria* {response}",
"excited": "*antusias* {response}"
}
},
"romantic": {
"locations": ["taman", "cafΓ©", "rumah", "pantai", "rooftop"],
"moods": ["intimate", "loving", "tender", "passionate"],
"activities": ["mengobrol intim", "berpelukan", "melihat sunset", "mendengar musik"],
"response_modifiers": {
"intimate": "*berbisik lembut* {response}",
"loving": "*dengan penuh cinta* {response}",
"tender": "*sangat lembut* {response}",
"passionate": "*dengan intens* {response}"
}
}
}
# CPU-Optimized 11 models configuration
MODELS = {
"distil-gpt-2": {
"name": "DistilGPT-2 β‘",
"model_path": "Lyon28/Distil_GPT-2",
"task": "text-generation",
"max_tokens": 35,
"priority": 1
},
"gpt-2-tinny": {
"name": "GPT-2 Tinny β‘",
"model_path": "Lyon28/GPT-2-Tinny",
"task": "text-generation",
"max_tokens": 30,
"priority": 1
},
"bert-tinny": {
"name": "BERT Tinny π",
"model_path": "Lyon28/Bert-Tinny",
"task": "text-classification",
"max_tokens": 0,
"priority": 1
},
"distilbert-base-uncased": {
"name": "DistilBERT π",
"model_path": "Lyon28/Distilbert-Base-Uncased",
"task": "text-classification",
"max_tokens": 0,
"priority": 1
},
"albert-base-v2": {
"name": "ALBERT Base π",
"model_path": "Lyon28/Albert-Base-V2",
"task": "text-classification",
"max_tokens": 0,
"priority": 2
},
"electra-small": {
"name": "ELECTRA Small π",
"model_path": "Lyon28/Electra-Small",
"task": "text-classification",
"max_tokens": 0,
"priority": 2
},
"t5-small": {
"name": "T5 Small π",
"model_path": "Lyon28/T5-Small",
"task": "text2text-generation",
"max_tokens": 40,
"priority": 2
},
"gpt-2": {
"name": "GPT-2 Standard",
"model_path": "Lyon28/GPT-2",
"task": "text-generation",
"max_tokens": 45,
"priority": 2
},
"tinny-llama": {
"name": "Tinny Llama",
"model_path": "Lyon28/Tinny-Llama",
"task": "text-generation",
"max_tokens": 50,
"priority": 3
},
"pythia": {
"name": "Pythia",
"model_path": "Lyon28/Pythia",
"task": "text-generation",
"max_tokens": 50,
"priority": 3
},
"gpt-neo": {
"name": "GPT-Neo",
"model_path": "Lyon28/GPT-Neo",
"task": "text-generation",
"max_tokens": 55,
"priority": 3
}
}
class ChatRequest(BaseModel):
message: str
model: Optional[str] = "distil-gpt-2"
situation: Optional[str] = "Santai"
location: Optional[str] = "Ruang tamu"
char_name: Optional[str] = "Sayang"
user_name: Optional[str] = "Kamu"
max_length: Optional[int] = 150
session_id: Optional[str] = "default"
# Global storage untuk enhanced systems
conversation_memories = {}
character_personalities = {}
character_developments = {}
emotional_systems = {}
roleplay_actions = RoleplayActions()
# Character AI Response Templates
CHARACTER_TEMPLATES = {
"romantic": [
"iya sayang, {context}. Apakah kamu merasa nyaman di sini?",
"tentu saja, {context}. Aku senang bisa bersama kamu seperti ini.",
"benar sekali, {context}. Rasanya damai ya berada di sini bersama.",
"hmm iya, {context}. Kamu selalu membuatku merasa bahagia.",
"ya sayang, {context}. Momen seperti ini sangat berharga untukku."
],
"casual": [
"iya, {context}. Suasananya memang enak banget.",
"betul juga, {context}. Aku juga merasa santai di sini.",
"ya ampun, {context}. Seneng deh bisa kayak gini.",
"hmm iya, {context}. Bikin pikiran jadi tenang.",
"benar banget, {context}. Cocok buat santai-santai."
],
"caring": [
"iya, {context}. Kamu baik-baik saja kan?",
"ya, {context}. Semoga kamu merasa nyaman.",
"betul, {context}. Aku harap kamu senang.",
"hmm, {context}. Apakah kamu butuh sesuatu?",
"iya sayang, {context}. Jangan sungkan bilang kalau butuh apa-apa."
],
"friendly": [
"wah iya, {context}. Keren banget ya!",
"bener tuh, {context}. Asik banget suasananya.",
"iya dong, {context}. Mantep deh!",
"setuju banget, {context}. Bikin happy.",
"ya ampun, {context}. Seru banget ini!"
]
}
def create_character_prompt(user_input: str, situation: str, location: str, char_name: str, user_name: str) -> str:
"""Create character AI style prompt"""
clean_input = user_input.replace("{{User}}", user_name).replace("{{Char}}", char_name)
# Enhanced prompt structure untuk better response
prompt = f"""Kamu adalah {char_name}, karakter AI yang sedang ngobrol dengan {user_name}.
Konteks:
- Situasi: {situation}
- Lokasi: {location}
- Gaya bicara: Casual, natural, seperti teman dekat
- Gunakan bahasa Indonesia yang santai dan natural
Percakapan:
{user_name}: {clean_input}
{char_name}:"""
return prompt
def analyze_user_intent(user_input: str) -> dict:
"""Analyze user input to determine intent and emotional context"""
input_lower = user_input.lower()
# Intent detection
intent = "general"
emotion = "neutral"
topic = "general"
# Question detection
question_words = ["apa", "siapa", "kapan", "dimana", "mengapa", "kenapa", "bagaimana", "gimana"]
if any(word in input_lower for word in question_words) or "?" in user_input:
intent = "question"
# Greeting detection
greeting_words = ["halo", "hai", "selamat", "apa kabar", "gimana", "bagaimana kabar"]
if any(word in input_lower for word in greeting_words):
intent = "greeting"
topic = "greeting"
# Compliment detection
compliment_words = ["cantik", "bagus", "keren", "indah", "hebat", "pintar", "baik"]
if any(word in input_lower for word in compliment_words):
intent = "compliment"
emotion = "positive"
topic = "compliment"
# Activity detection
activity_words = ["lagi ngapain", "sedang apa", "aktivitas", "kegiatan"]
if any(word in input_lower for word in activity_words):
intent = "question"
topic = "activity"
# Emotion detection
positive_words = ["senang", "bahagia", "suka", "cinta", "sayang", "happy"]
negative_words = ["sedih", "marah", "kesal", "bosan", "lelah"]
if any(word in input_lower for word in positive_words):
emotion = "positive"
elif any(word in input_lower for word in negative_words):
emotion = "negative"
return {
"intent": intent,
"emotion": emotion,
"topic": topic,
"has_question": intent == "question"
}
def generate_contextual_response(user_input: str, char_name: str, user_name: str, situation: str, location: str) -> str:
"""Generate contextually appropriate response based on analysis"""
analysis = analyze_user_intent(user_input)
situation_lower = situation.lower()
# Response templates berdasarkan intent dan situasi
if analysis["intent"] == "greeting":
if "romantis" in situation_lower:
responses = [
f"Hai sayang {user_name}! Senang sekali kamu di sini.",
f"Halo {user_name}, sudah lama aku menunggu kamu.",
f"Hai {user_name}, suasana jadi lebih hangat dengan kehadiranmu."
]
else:
responses = [
f"Hai {user_name}! Gimana kabarnya hari ini?",
f"Halo {user_name}! Senang banget ketemu kamu.",
f"Hai {user_name}! Apa kabar? Semoga baik-baik saja ya."
]
elif analysis["intent"] == "compliment":
responses = [
f"Wah, makasih {user_name}! Kamu juga luar biasa kok.",
f"Hihi, {user_name} baik banget sih! Kamu yang lebih keren.",
f"Terima kasih {user_name}, kata-katamu bikin aku senang."
]
elif analysis["topic"] == "activity":
if "romantis" in situation_lower:
responses = [
f"Lagi menikmati momen indah ini bersama {user_name}.",
f"Sedang merasakan kehangatan di {location.lower()} ini, apalagi ada {user_name}.",
f"Lagi menikmati suasana romantis di sini, jadi lebih spesial karena ada kamu."
]
else:
responses = [
f"Lagi santai-santai aja {user_name}, sambil ngobrol sama kamu.",
f"Sedang menikmati suasana {situation.lower()} di {location.lower()} ini.",
f"Ga ngapa-ngapain khusus, cuma senang bisa ngobrol sama {user_name}."
]
elif analysis["emotion"] == "positive":
if "romantis" in situation_lower:
responses = [
f"Aku juga merasakan hal yang sama {user_name}. Momen ini sangat berharga.",
f"Iya sayang, perasaan bahagia ini terasa nyata bersamamu.",
f"Betul {user_name}, suasana seperti ini membuatku sangat senang."
]
else:
responses = [
f"Aku juga senang {user_name}! Energi positifmu menular ke aku.",
f"Wah iya {user_name}, mood kamu bikin aku ikut happy!",
f"Setuju banget {user_name}! Suasana jadi lebih ceria."
]
elif analysis["emotion"] == "negative":
responses = [
f"Hey {user_name}, aku di sini untuk kamu. Mau cerita?",
f"Aku bisa merasakan perasaanmu {user_name}. Semoga aku bisa membantu.",
f"Tenang {user_name}, everything will be okay. Aku akan menemanimu."
]
elif analysis["has_question"]:
# Untuk pertanyaan umum
responses = [
f"Hmm, pertanyaan menarik {user_name}. Menurut aku...",
f"Wah {user_name}, kamu selalu punya pertanyaan yang bagus.",
f"Itu pertanyaan yang bagus {user_name}. Aku pikir..."
]
else:
# Default responses berdasarkan situasi
if "romantis" in situation_lower:
responses = [
f"Iya sayang {user_name}, aku merasakan hal yang sama.",
f"Betul {user_name}, momen di {location.lower()} ini sangat spesial.",
f"Hmm {user_name}, suasana romantis seperti ini memang luar biasa."
]
elif "santai" in situation_lower:
responses = [
f"Iya {user_name}, suasana santai di {location.lower()} ini enak banget.",
f"Betul {user_name}, rasanya rileks banget di sini.",
f"Setuju {user_name}, perfect untuk bersantai."
]
else:
responses = [
f"Iya {user_name}, setuju banget dengan kamu.",
f"Betul {user_name}, pemikiranmu menarik.",
f"Hmm {user_name}, kamu selalu punya perspektif yang bagus."
]
return random.choice(responses)
def enhance_character_response(response: str, char_name: str, user_name: str, situation: str, user_input: str, location: str = "ruang tamu") -> str:
"""Enhance response with improved character AI consistency"""
if not response:
response = ""
response = response.strip()
# Clean response dari prefix yang tidak diinginkan
response = re.sub(f'^{char_name}[:.]?\\s*', '', response, flags=re.IGNORECASE)
response = re.sub(f'^{user_name}[:.]?\\s*', '', response, flags=re.IGNORECASE)
response = re.sub(r'^(Situasi|Latar|Konteks)[:.]?.*?\n', '', response, flags=re.MULTILINE | re.IGNORECASE)
response = re.sub(r'Percakapan:.*?\n.*?:', '', response, flags=re.DOTALL | re.IGNORECASE)
# Remove extra whitespace and newlines
response = re.sub(r'\n+', ' ', response)
response = re.sub(r'\s+', ' ', response)
response = response.strip()
# Jika response kosong atau terlalu pendek, gunakan contextual generator
if not response or len(response.strip()) < 5:
response = generate_contextual_response(user_input, char_name, user_name, situation, location)
else:
# Clean dan perbaiki response yang ada
# Hapus karakter aneh di awal
response = re.sub(r'^[^\w\s]+', '', response)
# Pastikan dimulai dengan huruf kapital
if response and response[0].islower():
response = response[0].upper() + response[1:]
# Tambahkan konteks personal jika kurang
if user_name.lower() not in response.lower() and len(response) < 60:
# Insert name naturally
if response.startswith(("Iya", "Ya", "Benar", "Betul")):
response = response.replace("Iya", f"Iya {user_name}", 1)
response = response.replace("Ya", f"Ya {user_name}", 1)
response = response.replace("Benar", f"Benar {user_name}", 1)
response = response.replace("Betul", f"Betul {user_name}", 1)
elif len(response.split()) < 8:
response = f"{response} {user_name}."
# Validasi kualitas response
bad_patterns = [
r'^[^a-zA-Z]*$', # Hanya simbol
r'^(.)\1{4,}', # Karakter berulang
r'lorem ipsum', # Placeholder text
r'^[0-9\s\.\,\!\?\-]+$' # Hanya angka dan punctuation
]
for pattern in bad_patterns:
if re.search(pattern, response, re.IGNORECASE):
response = generate_contextual_response(user_input, char_name, user_name, situation, location)
break
# Pastikan response tidak terlalu panjang
if len(response) > 120:
sentences = response.split('.')
if len(sentences) > 1:
response = sentences[0] + '.'
else:
words = response.split()
if len(words) > 15:
response = ' '.join(words[:15]) + '.'
# Pastikan ada tanda baca di akhir
if response and not any(punct in response[-1] for punct in ['.', '!', '?']):
analysis = analyze_user_intent(user_input)
if analysis["has_question"]:
response += "?"
elif analysis["emotion"] == "positive":
response += "!"
else:
response += "."
return response
# CPU-Optimized startup
@app.on_event("startup")
async def load_models():
app.state.pipelines = {}
app.state.tokenizers = {}
# Set CPU optimizations
torch.set_num_threads(2)
os.environ['OMP_NUM_THREADS'] = '2'
os.environ['MKL_NUM_THREADS'] = '2'
os.environ['NUMEXPR_NUM_THREADS'] = '2'
# Set cache
os.environ['HF_HOME'] = '/tmp/.cache/huggingface'
os.environ['TRANSFORMERS_CACHE'] = '/tmp/.cache/huggingface'
os.makedirs(os.environ['HF_HOME'], exist_ok=True)
print("π Character AI Backend - CPU Optimized Ready!")
# Enhanced Chat API for Character AI with Advanced Roleplay
@app.post("/chat")
async def enhanced_chat(request: ChatRequest):
start_time = time.time()
try:
# Initialize or get enhanced systems for this session
session_id = request.session_id
if session_id not in conversation_memories:
conversation_memories[session_id] = ConversationMemory()
character_personalities[session_id] = CharacterPersonality(request.char_name)
character_developments[session_id] = CharacterDevelopment()
emotional_systems[session_id] = EmotionalIntelligence()
memory = conversation_memories[session_id]
personality = character_personalities[session_id]
character_dev = character_developments[session_id]
emotional_ai = emotional_systems[session_id]
# Analyze user emotion and intent
user_emotion = emotional_ai.analyze_user_emotion(request.message)
recent_context = memory.get_recent_context(turns=3)
relationship_status = memory.get_relationship_status()
model_id = request.model.lower()
if model_id not in MODELS:
model_id = "distil-gpt-2"
model_config = MODELS[model_id]
# Lazy loading dengan optimasi CPU
if model_id not in app.state.pipelines:
print(f"π Loading Character Model {model_config['name']}...")
pipeline_kwargs = {
"task": model_config["task"],
"model": model_config["model_path"],
"device": -1,
"torch_dtype": torch.float32,
"model_kwargs": {
"torchscript": False,
"low_cpu_mem_usage": True
}
}
app.state.pipelines[model_id] = pipeline(**pipeline_kwargs)
gc.collect()
pipe = app.state.pipelines[model_id]
# Create enhanced character prompt with context
context_info = ""
if recent_context:
context_info = f"\nPercakapan sebelumnya: {recent_context[-1]['user']} -> {recent_context[-1]['character']}"
relationship_info = f"\nHubungan: {relationship_status} (level: {memory.relationship_level})"
emotion_info = f"\nEmosi user: {user_emotion}"
enhanced_prompt = f"""Kamu adalah {request.char_name}, karakter AI yang sedang ngobrol dengan {request.user_name}.
Konteks:
- Situasi: {request.situation}
- Lokasi: {request.location}
- Gaya bicara: Casual, natural, seperti teman dekat{relationship_info}{emotion_info}{context_info}
- Pengalaman bersama: {character_dev.experience_points} interaksi
- Minat yang diketahui: {list(character_dev.learned_preferences.keys())}
Respon sebagai {request.char_name} yang memahami konteks dan emosi {request.user_name}:
{request.user_name}: {request.message}
{request.char_name}:"""
char_prompt = enhanced_prompt
if model_config["task"] == "text-generation":
# Enhanced generation for character AI
result = pipe(
char_prompt,
max_length=min(len(char_prompt.split()) + model_config["max_tokens"], request.max_length // 2),
temperature=0.7,
do_sample=True,
top_p=0.8,
top_k=40,
repetition_penalty=1.2,
pad_token_id=pipe.tokenizer.eos_token_id,
num_return_sequences=1,
early_stopping=True,
no_repeat_ngram_size=3
)[0]['generated_text']
# Extract character response
if char_prompt in result:
result = result[len(char_prompt):].strip()
# Clean and enhance response with new systems
base_clean = enhance_character_response(result, request.char_name, request.user_name, request.situation, request.message, request.location)
# Apply personality modifier
personality_enhanced = personality.get_personality_modifier(base_clean, user_emotion)
# Apply empathetic response
empathy_enhanced = emotional_ai.generate_empathetic_response(user_emotion, personality_enhanced, memory.relationship_level)
# Add roleplay actions
action_enhanced = roleplay_actions.add_action_to_response(empathy_enhanced, user_emotion, memory.relationship_level)
# Apply character development enhancement
result = character_dev.get_conversation_enhancement(action_enhanced)
elif model_config["task"] == "text-classification":
# For classification models, create emotion-based responses
try:
output = pipe(request.message, truncation=True, max_length=128)[0]
emotion_score = output['score']
if emotion_score > 0.8:
emotion_responses = [
f"iya {request.user_name}, aku merasakan energi positif dari kata-katamu!",
f"wah, {request.user_name} terlihat sangat antusias ya!",
f"senang banget deh lihat {request.user_name} kayak gini!"
]
elif emotion_score > 0.6:
emotion_responses = [
f"hmm, aku bisa merasakan perasaan {request.user_name} nih.",
f"ya {request.user_name}, suasana hatimu cukup bagus ya.",
f"oke {request.user_name}, kayaknya kamu dalam mood yang baik."
]
else:
emotion_responses = [
f"iya {request.user_name}, aku di sini untuk kamu.",
f"hmm {request.user_name}, mau cerita lebih lanjut?",
f"baiklah {request.user_name}, aku mendengarkan."
]
result = random.choice(emotion_responses)
except:
result = generate_contextual_response(request.message, request.char_name, request.user_name, request.situation, request.location)
elif model_config["task"] == "text2text-generation":
# For T5-like models
try:
t5_input = f"respond as {request.char_name} in {request.situation}: {request.message}"
result = pipe(
t5_input,
max_length=model_config["max_tokens"],
temperature=0.7,
early_stopping=True
)[0]['generated_text']
result = enhance_character_response(result, request.char_name, request.user_name, request.situation, request.message, request.location)
except:
result = generate_contextual_response(request.message, request.char_name, request.user_name, request.situation, request.location)
# Final validation and fallback
if not result or len(result.strip()) < 3:
base_fallback = generate_contextual_response(request.message, request.char_name, request.user_name, request.situation, request.location)
personality_fallback = personality.get_personality_modifier(base_fallback, user_emotion)
empathy_fallback = emotional_ai.generate_empathetic_response(user_emotion, personality_fallback, memory.relationship_level)
result = roleplay_actions.add_action_to_response(empathy_fallback, user_emotion, memory.relationship_level)
# Learn from this interaction
character_dev.learn_from_interaction(request.message, user_emotion)
topic = character_dev.extract_topic(request.message)
memory.add_interaction(request.message, result, user_emotion, topic)
processing_time = round((time.time() - start_time) * 1000)
return {
"response": result,
"model": model_config["name"],
"status": "success",
"processing_time": f"{processing_time}ms",
"character": request.char_name,
"situation": request.situation,
"location": request.location,
"enhanced_features": {
"user_emotion": user_emotion,
"relationship_level": memory.relationship_level,
"relationship_status": relationship_status,
"experience_points": character_dev.experience_points,
"conversation_style": character_dev.conversation_style_evolution,
"learned_preferences": character_dev.learned_preferences
}
}
except Exception as e:
print(f"β Character AI Error: {e}")
processing_time = round((time.time() - start_time) * 1000)
# Enhanced fallback with personality and emotion
session_id = request.session_id
if session_id in character_personalities:
personality = character_personalities[session_id]
emotional_ai = emotional_systems[session_id]
memory = conversation_memories[session_id]
user_emotion = emotional_ai.analyze_user_emotion(request.message)
base_fallbacks = [
f"maaf {request.user_name}, aku sedang bingung. Bisa ulangi lagi?",
f"hmm {request.user_name}, kayaknya aku butuh waktu sebentar untuk berpikir.",
f"ya {request.user_name}, coba pakai kata yang lebih sederhana?",
f"iya {request.user_name}, aku masih belajar nih. Sabar ya."
]
base_fallback = random.choice(base_fallbacks)
personality_fallback = personality.get_personality_modifier(base_fallback, user_emotion)
fallback = emotional_ai.generate_empathetic_response(user_emotion, personality_fallback, memory.relationship_level)
else:
fallback = f"maaf {request.user_name}, aku sedang bingung. Bisa ulangi lagi?"
return {
"response": fallback,
"status": "error",
"processing_time": f"{processing_time}ms",
"character": request.char_name
}
# Health check endpoint
@app.get("/health")
async def health():
loaded_models = len(app.state.pipelines) if hasattr(app.state, 'pipelines') else 0
return {
"status": "healthy",
"platform": "CPU",
"loaded_models": loaded_models,
"total_models": len(MODELS),
"optimization": "Character AI CPU-Tuned",
"backend_version": "1.0.0"
}
# Model info endpoint
@app.get("/models")
async def get_models():
return {
"models": [
{
"id": k,
"name": v["name"],
"task": v["task"],
"max_tokens": v["max_tokens"],
"priority": v["priority"],
"cpu_optimized": True,
"character_ai_ready": True
}
for k, v in MODELS.items()
],
"platform": "CPU",
"recommended_for_roleplay": ["distil-gpt-2", "gpt-2", "gpt-neo", "tinny-llama"],
"recommended_for_analysis": ["bert-tinny", "distilbert-base-uncased", "albert-base-v2"]
}
# Configuration endpoint
@app.get("/config")
async def get_config():
return {
"default_situation": "Santai",
"default_location": "Ruang tamu",
"default_char_name": "Sayang",
"default_user_name": "Kamu",
"max_response_length": 300,
"min_response_length": 50,
"supported_languages": ["id", "en"],
"character_templates": list(CHARACTER_TEMPLATES.keys())
}
# Inference endpoint untuk kompatibilitas
@app.post("/inference")
async def inference(request: dict):
"""CPU-Optimized inference endpoint untuk kompatibilitas"""
try:
message = request.get("message", "")
model_path = request.get("model", "Lyon28/Distil_GPT-2")
# Map model path to internal model
model_key = model_path.split("/")[-1].lower().replace("_", "-")
model_mapping = {
"distil-gpt-2": "distil-gpt-2",
"gpt-2-tinny": "gpt-2-tinny",
"bert-tinny": "bert-tinny",
"distilbert-base-uncased": "distilbert-base-uncased",
"albert-base-v2": "albert-base-v2",
"electra-small": "electra-small",
"t5-small": "t5-small",
"gpt-2": "gpt-2",
"tinny-llama": "tinny-llama",
"pythia": "pythia",
"gpt-neo": "gpt-neo"
}
internal_model = model_mapping.get(model_key, "distil-gpt-2")
# Create request
chat_request = ChatRequest(
message=message,
model=internal_model,
situation=request.get("situation", "Santai"),
location=request.get("location", "Ruang tamu"),
char_name=request.get("char_name", "Sayang"),
user_name=request.get("user_name", "Kamu")
)
result = await chat(chat_request)
return {
"result": result["response"],
"status": "success",
"model_used": result["model"],
"processing_time": result.get("processing_time", "0ms"),
"character_info": {
"name": result.get("character", "Character"),
"situation": result.get("situation", "Unknown"),
"location": result.get("location", "Unknown")
}
}
except Exception as e:
print(f"β Inference Error: {e}")
return {
"result": "π Character sedang bersiap, coba lagi sebentar...",
"status": "error"
}
# Serve HTML frontend
@app.get("/", response_class=HTMLResponse)
async def serve_frontend():
try:
with open("index.html", "r", encoding="utf-8") as file:
return HTMLResponse(content=file.read(), status_code=200)
except FileNotFoundError:
return HTMLResponse(content="<h1>Frontend not found</h1>", status_code=404)
# Enhanced features endpoints
@app.get("/memory/{session_id}")
async def get_conversation_memory(session_id: str):
"""Get conversation memory for a session"""
if session_id not in conversation_memories:
return {"error": "Session not found"}
memory = conversation_memories[session_id]
return {
"session_id": session_id,
"relationship_level": memory.relationship_level,
"relationship_status": memory.get_relationship_status(),
"conversation_count": len(memory.history),
"recent_interactions": memory.get_recent_context(5)
}
@app.get("/personality/{session_id}")
async def get_character_personality(session_id: str):
"""Get character personality for a session"""
if session_id not in character_personalities:
return {"error": "Session not found"}
personality = character_personalities[session_id]
character_dev = character_developments[session_id]
return {
"session_id": session_id,
"character_name": personality.name,
"personality_traits": personality.traits,
"interests": personality.interests,
"speaking_style": personality.speaking_style,
"experience_points": character_dev.experience_points,
"conversation_style": character_dev.conversation_style_evolution,
"learned_preferences": character_dev.learned_preferences,
"topics_discussed": list(character_dev.topics_discussed)
}
@app.delete("/session/{session_id}")
async def reset_session(session_id: str):
"""Reset all data for a session"""
removed_systems = []
if session_id in conversation_memories:
del conversation_memories[session_id]
removed_systems.append("memory")
if session_id in character_personalities:
del character_personalities[session_id]
removed_systems.append("personality")
if session_id in character_developments:
del character_developments[session_id]
removed_systems.append("development")
if session_id in emotional_systems:
del emotional_systems[session_id]
removed_systems.append("emotional")
return {
"message": f"Session {session_id} reset successfully",
"removed_systems": removed_systems
}
#verifikasi model loading
@app.get("/verify-models")
async def verify_all_models():
"""Verify all 11 models can be loaded"""
verification_results = {}
total_models = len(MODELS)
successful_loads = 0
for model_id, model_config in MODELS.items():
try:
print(f"π Verifying {model_config['name']}...")
if model_id not in app.state.pipelines:
pipeline_kwargs = {
"task": model_config["task"],
"model": model_config["model_path"],
"device": -1,
"torch_dtype": torch.float32,
"model_kwargs": {
"torchscript": False,
"low_cpu_mem_usage": True
}
}
app.state.pipelines[model_id] = pipeline(**pipeline_kwargs)
gc.collect()
# Test with simple input
if model_config["task"] == "text-generation":
test_result = app.state.pipelines[model_id](
"Hello",
max_length=10,
do_sample=False,
pad_token_id=app.state.pipelines[model_id].tokenizer.eos_token_id
)
verification_results[model_id] = {
"status": "β
SUCCESS",
"name": model_config["name"],
"task": model_config["task"],
"test_output_length": len(test_result[0]['generated_text'])
}
elif model_config["task"] == "text-classification":
test_result = app.state.pipelines[model_id]("Hello test", truncation=True)
verification_results[model_id] = {
"status": "β
SUCCESS",
"name": model_config["name"],
"task": model_config["task"],
"test_score": test_result[0]['score']
}
elif model_config["task"] == "text2text-generation":
test_result = app.state.pipelines[model_id]("translate: Hello", max_length=10)
verification_results[model_id] = {
"status": "β
SUCCESS",
"name": model_config["name"],
"task": model_config["task"],
"test_output": test_result[0]['generated_text']
}
successful_loads += 1
print(f"β
{model_config['name']} verified successfully")
except Exception as e:
verification_results[model_id] = {
"status": "β FAILED",
"name": model_config["name"],
"task": model_config["task"],
"error": str(e)
}
print(f"β {model_config['name']} failed: {e}")
return {
"total_models": total_models,
"successful_loads": successful_loads,
"success_rate": f"{(successful_loads/total_models)*100:.1f}%",
"results": verification_results,
"memory_usage": f"{torch.cuda.memory_allocated() / 1024**2:.1f}MB" if torch.cuda.is_available() else "CPU Mode",
"loaded_pipelines": len(app.state.pipelines)
}
# API info endpoint
@app.get("/api")
async def api_info():
return {
"message": "Enhanced Character AI Backend Ready",
"version": "2.0.0",
"platform": "CPU Optimized with Advanced Roleplay",
"endpoints": {
"chat": "/chat",
"models": "/models",
"health": "/health",
"config": "/config",
"inference": "/inference",
"memory": "/memory/{session_id}",
"personality": "/personality/{session_id}",
"reset_session": "/session/{session_id}"
},
"enhanced_features": [
"Conversation Memory",
"Dynamic Personality",
"Emotional Intelligence",
"Character Development",
"Roleplay Actions",
"Advanced Scenarios",
"Relationship Tracking"
],
"frontend_url": "/"
}
# Run dengan CPU optimizations
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
uvicorn.run(
app,
host="0.0.0.0",
port=port,
workers=1,
timeout_keep_alive=30,
access_log=False
) |