Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,220 +1,88 @@
|
|
1 |
import os
|
2 |
import uvicorn
|
3 |
-
import
|
4 |
-
from concurrent.futures import ThreadPoolExecutor
|
5 |
-
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
6 |
from fastapi.responses import HTMLResponse
|
|
|
7 |
from pydantic import BaseModel
|
8 |
-
from transformers import pipeline
|
9 |
import torch
|
10 |
-
from typing import Optional
|
11 |
-
import time
|
12 |
-
import logging
|
13 |
-
|
14 |
-
# Setup logging
|
15 |
-
logging.basicConfig(level=logging.INFO)
|
16 |
-
logger = logging.getLogger(__name__)
|
17 |
|
18 |
# Inisialisasi FastAPI
|
19 |
-
app = FastAPI(title="LyonPoy AI Chat
|
20 |
|
21 |
-
#
|
22 |
MODELS = {
|
23 |
-
"distil-gpt-2": {
|
24 |
-
"name": "DistilGPT-2",
|
25 |
-
"model_path": "Lyon28/Distil_GPT-2",
|
26 |
-
"task": "text-generation",
|
27 |
-
"priority": 1 # Highest priority - smallest model
|
28 |
-
},
|
29 |
-
"gpt-2-tinny": {
|
30 |
-
"name": "GPT-2 Tinny",
|
31 |
-
"model_path": "Lyon28/GPT-2-Tinny",
|
32 |
-
"task": "text-generation",
|
33 |
-
"priority": 2
|
34 |
-
},
|
35 |
"tinny-llama": {
|
36 |
"name": "Tinny Llama",
|
37 |
"model_path": "Lyon28/Tinny-Llama",
|
38 |
-
"task": "text-generation"
|
39 |
-
"priority": 3
|
40 |
},
|
41 |
-
"
|
42 |
-
"name": "
|
43 |
-
"model_path": "Lyon28/
|
44 |
-
"task": "text-generation"
|
45 |
-
"priority": 4
|
46 |
},
|
47 |
"bert-tinny": {
|
48 |
"name": "BERT Tinny",
|
49 |
"model_path": "Lyon28/Bert-Tinny",
|
50 |
-
"task": "text-classification"
|
51 |
-
"priority": 5
|
52 |
},
|
53 |
"albert-base-v2": {
|
54 |
"name": "ALBERT Base V2",
|
55 |
"model_path": "Lyon28/Albert-Base-V2",
|
56 |
-
"task": "text-classification"
|
57 |
-
"priority": 6
|
58 |
-
},
|
59 |
-
"distilbert-base-uncased": {
|
60 |
-
"name": "DistilBERT",
|
61 |
-
"model_path": "Lyon28/Distilbert-Base-Uncased",
|
62 |
-
"task": "text-classification",
|
63 |
-
"priority": 7
|
64 |
-
},
|
65 |
-
"electra-small": {
|
66 |
-
"name": "ELECTRA Small",
|
67 |
-
"model_path": "Lyon28/Electra-Small",
|
68 |
-
"task": "text-classification",
|
69 |
-
"priority": 8
|
70 |
},
|
71 |
"t5-small": {
|
72 |
"name": "T5 Small",
|
73 |
"model_path": "Lyon28/T5-Small",
|
74 |
-
"task": "text2text-generation"
|
75 |
-
"priority": 9
|
76 |
},
|
77 |
-
"
|
78 |
-
"name": "
|
79 |
-
"model_path": "Lyon28/
|
80 |
-
"task": "text-generation"
|
81 |
-
"priority": 10
|
82 |
},
|
83 |
"gpt-neo": {
|
84 |
"name": "GPT-Neo",
|
85 |
"model_path": "Lyon28/GPT-Neo",
|
86 |
-
"task": "text-generation"
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
}
|
89 |
}
|
90 |
|
91 |
class ChatRequest(BaseModel):
|
92 |
message: str
|
93 |
-
model: Optional[str] = "
|
94 |
-
|
95 |
-
# Global state
|
96 |
-
app.state.pipelines = {}
|
97 |
-
app.state.loading_models = set()
|
98 |
-
app.state.executor = ThreadPoolExecutor(max_workers=2)
|
99 |
-
|
100 |
-
# Optimized model loading
|
101 |
-
async def load_model_async(model_id: str):
|
102 |
-
"""Load model in background thread"""
|
103 |
-
if model_id in app.state.loading_models:
|
104 |
-
return False
|
105 |
-
|
106 |
-
app.state.loading_models.add(model_id)
|
107 |
-
|
108 |
-
try:
|
109 |
-
model_config = MODELS[model_id]
|
110 |
-
logger.info(f"🔄 Loading {model_config['name']}...")
|
111 |
-
|
112 |
-
# Load in thread to avoid blocking
|
113 |
-
loop = asyncio.get_event_loop()
|
114 |
-
|
115 |
-
def load_model():
|
116 |
-
device = 0 if torch.cuda.is_available() else -1
|
117 |
-
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
118 |
-
|
119 |
-
return pipeline(
|
120 |
-
task=model_config["task"],
|
121 |
-
model=model_config["model_path"],
|
122 |
-
device=device,
|
123 |
-
torch_dtype=dtype,
|
124 |
-
use_fast=True,
|
125 |
-
trust_remote_code=True,
|
126 |
-
low_cpu_mem_usage=True,
|
127 |
-
# Optimization for faster inference
|
128 |
-
pad_token_id=50256 if "gpt" in model_id else None
|
129 |
-
)
|
130 |
-
|
131 |
-
pipeline_obj = await loop.run_in_executor(app.state.executor, load_model)
|
132 |
-
app.state.pipelines[model_id] = pipeline_obj
|
133 |
-
logger.info(f"✅ {model_config['name']} loaded successfully")
|
134 |
-
return True
|
135 |
-
|
136 |
-
except Exception as e:
|
137 |
-
logger.error(f"❌ Failed to load {model_id}: {e}")
|
138 |
-
return False
|
139 |
-
finally:
|
140 |
-
app.state.loading_models.discard(model_id)
|
141 |
|
|
|
142 |
@app.on_event("startup")
|
143 |
async def load_models():
|
144 |
-
|
145 |
-
os.environ['HF_HOME'] = '
|
146 |
os.makedirs(os.environ['HF_HOME'], exist_ok=True)
|
147 |
-
|
148 |
-
# Pre-load top 3 fastest models
|
149 |
-
priority_models = sorted(MODELS.keys(), key=lambda x: MODELS[x]['priority'])[:3]
|
150 |
-
|
151 |
-
tasks = []
|
152 |
-
for model_id in priority_models:
|
153 |
-
task = asyncio.create_task(load_model_async(model_id))
|
154 |
-
tasks.append(task)
|
155 |
-
|
156 |
-
# Load models concurrently
|
157 |
-
await asyncio.gather(*tasks, return_exceptions=True)
|
158 |
-
logger.info("🚀 LyonPoy AI Chat Ready!")
|
159 |
|
160 |
-
#
|
161 |
-
async def run_inference(model_id: str, message: str):
|
162 |
-
"""Run inference in background thread"""
|
163 |
-
if model_id not in app.state.pipelines:
|
164 |
-
# Try to load model if not available
|
165 |
-
success = await load_model_async(model_id)
|
166 |
-
if not success:
|
167 |
-
raise HTTPException(status_code=503, detail=f"Model {model_id} unavailable")
|
168 |
-
|
169 |
-
pipe = app.state.pipelines[model_id]
|
170 |
-
model_config = MODELS[model_id]
|
171 |
-
|
172 |
-
loop = asyncio.get_event_loop()
|
173 |
-
|
174 |
-
def inference():
|
175 |
-
start_time = time.time()
|
176 |
-
|
177 |
-
try:
|
178 |
-
if model_config["task"] == "text-generation":
|
179 |
-
# Optimized generation parameters
|
180 |
-
result = pipe(
|
181 |
-
message,
|
182 |
-
max_new_tokens=min(50, 150 - len(message.split())), # Shorter responses
|
183 |
-
temperature=0.7,
|
184 |
-
do_sample=True,
|
185 |
-
top_p=0.9,
|
186 |
-
top_k=50,
|
187 |
-
repetition_penalty=1.1,
|
188 |
-
pad_token_id=pipe.tokenizer.eos_token_id if hasattr(pipe.tokenizer, 'eos_token_id') else 50256
|
189 |
-
)[0]['generated_text']
|
190 |
-
|
191 |
-
# Clean output
|
192 |
-
if result.startswith(message):
|
193 |
-
result = result[len(message):].strip()
|
194 |
-
|
195 |
-
# Limit response length
|
196 |
-
if len(result) > 200:
|
197 |
-
result = result[:200] + "..."
|
198 |
-
|
199 |
-
elif model_config["task"] == "text-classification":
|
200 |
-
output = pipe(message)[0]
|
201 |
-
result = f"Analisis: {output['label']} (Keyakinan: {output['score']:.2f})"
|
202 |
-
|
203 |
-
elif model_config["task"] == "text2text-generation":
|
204 |
-
result = pipe(message, max_length=100, num_beams=2)[0]['generated_text']
|
205 |
-
|
206 |
-
inference_time = time.time() - start_time
|
207 |
-
logger.info(f"⚡ Inference time: {inference_time:.2f}s for {model_config['name']}")
|
208 |
-
|
209 |
-
return result
|
210 |
-
|
211 |
-
except Exception as e:
|
212 |
-
logger.error(f"Inference error: {e}")
|
213 |
-
raise e
|
214 |
-
|
215 |
-
return await loop.run_in_executor(app.state.executor, inference)
|
216 |
-
|
217 |
-
# Frontend route - simplified HTML
|
218 |
@app.get("/", response_class=HTMLResponse)
|
219 |
async def get_frontend():
|
220 |
html_content = '''
|
@@ -223,188 +91,229 @@ async def get_frontend():
|
|
223 |
<head>
|
224 |
<meta charset="UTF-8">
|
225 |
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
226 |
-
<title>LyonPoy AI Chat
|
227 |
<style>
|
228 |
* { margin: 0; padding: 0; box-sizing: border-box; }
|
229 |
-
body {
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
.
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
</style>
|
242 |
</head>
|
243 |
<body>
|
244 |
-
<div class="container">
|
245 |
-
<div class="header">
|
246 |
-
<h1
|
247 |
-
<select
|
248 |
-
<option value="
|
249 |
-
<option value="gpt-2-tinny">GPT-2 Tinny</option>
|
250 |
<option value="tinny-llama">Tinny Llama</option>
|
251 |
-
<option value="
|
|
|
|
|
|
|
252 |
<option value="bert-tinny">BERT Tinny</option>
|
253 |
<option value="albert-base-v2">ALBERT Base V2</option>
|
254 |
<option value="distilbert-base-uncased">DistilBERT</option>
|
255 |
<option value="electra-small">ELECTRA Small</option>
|
256 |
<option value="t5-small">T5 Small</option>
|
257 |
-
<option value="pythia">Pythia</option>
|
258 |
-
<option value="gpt-neo">GPT-Neo (Slowest)</option>
|
259 |
</select>
|
260 |
</div>
|
261 |
-
<div class="chat" id="
|
262 |
-
|
263 |
-
|
264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
</div>
|
266 |
</div>
|
267 |
-
|
268 |
<script>
|
269 |
-
const
|
270 |
-
const
|
271 |
-
const
|
|
|
|
|
|
|
|
|
272 |
|
273 |
function addMessage(content, isUser = false) {
|
274 |
-
const
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
|
|
279 |
}
|
280 |
-
|
|
|
|
|
|
|
281 |
async function sendMessage() {
|
282 |
-
const message =
|
283 |
if (!message) return;
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
const startTime = Date.now();
|
290 |
-
|
291 |
try {
|
292 |
const response = await fetch('/chat', {
|
293 |
method: 'POST',
|
294 |
headers: { 'Content-Type': 'application/json' },
|
295 |
-
body: JSON.stringify({
|
296 |
-
message: message,
|
297 |
-
model: modelSelect.value
|
298 |
-
})
|
299 |
});
|
300 |
-
|
301 |
const data = await response.json();
|
302 |
-
|
303 |
-
|
304 |
-
// Remove loading message
|
305 |
-
chat.removeChild(chat.lastElementChild);
|
306 |
-
|
307 |
if (data.status === 'success') {
|
308 |
-
addMessage(
|
309 |
} else {
|
310 |
-
addMessage('❌
|
311 |
}
|
312 |
} catch (error) {
|
313 |
-
|
314 |
-
addMessage('❌
|
315 |
}
|
|
|
316 |
}
|
317 |
-
|
318 |
-
|
319 |
-
|
|
|
|
|
|
|
320 |
});
|
321 |
-
|
322 |
-
// Show welcome message
|
323 |
-
addMessage('👋 Halo! Pilih model dan mulai chat. Model DistilGPT-2 paling cepat!', false);
|
324 |
</script>
|
325 |
</body>
|
326 |
</html>
|
327 |
'''
|
328 |
return HTMLResponse(content=html_content)
|
329 |
|
330 |
-
#
|
331 |
@app.post("/chat")
|
332 |
-
async def chat(request: ChatRequest
|
333 |
try:
|
334 |
model_id = request.model.lower()
|
335 |
if model_id not in MODELS:
|
336 |
raise HTTPException(status_code=400, detail="Model tidak tersedia")
|
337 |
|
338 |
-
|
339 |
-
message = request.message[:200] # Max 200 chars
|
340 |
|
341 |
-
#
|
342 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
-
|
345 |
-
background_tasks.add_task(preload_next_model, model_id)
|
346 |
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
|
353 |
-
|
354 |
-
raise
|
355 |
-
except Exception as e:
|
356 |
-
logger.error(f"Chat error: {e}")
|
357 |
-
raise HTTPException(status_code=500, detail="Terjadi kesalahan")
|
358 |
-
|
359 |
-
async def preload_next_model(current_model: str):
|
360 |
-
"""Preload next model in background"""
|
361 |
-
try:
|
362 |
-
# Find next unloaded model by priority
|
363 |
-
loaded_models = set(app.state.pipelines.keys())
|
364 |
-
all_models = sorted(MODELS.keys(), key=lambda x: MODELS[x]['priority'])
|
365 |
|
366 |
-
for model_id in all_models:
|
367 |
-
if model_id not in loaded_models and model_id not in app.state.loading_models:
|
368 |
-
await load_model_async(model_id)
|
369 |
-
break
|
370 |
except Exception as e:
|
371 |
-
|
|
|
372 |
|
373 |
-
# Health check
|
374 |
@app.get("/health")
|
375 |
async def health():
|
376 |
-
|
377 |
-
return {
|
378 |
-
"status": "healthy",
|
379 |
-
"gpu": torch.cuda.is_available(),
|
380 |
-
"loaded_models": loaded_models,
|
381 |
-
"loading_models": list(app.state.loading_models)
|
382 |
-
}
|
383 |
-
|
384 |
-
# Model status endpoint
|
385 |
-
@app.get("/models")
|
386 |
-
async def get_models():
|
387 |
-
models_status = {}
|
388 |
-
for model_id, config in MODELS.items():
|
389 |
-
models_status[model_id] = {
|
390 |
-
"name": config["name"],
|
391 |
-
"loaded": model_id in app.state.pipelines,
|
392 |
-
"loading": model_id in app.state.loading_models,
|
393 |
-
"priority": config["priority"]
|
394 |
-
}
|
395 |
-
return models_status
|
396 |
-
|
397 |
-
# Cleanup on shutdown
|
398 |
-
@app.on_event("shutdown")
|
399 |
-
async def cleanup():
|
400 |
-
app.state.executor.shutdown(wait=True)
|
401 |
|
|
|
402 |
if __name__ == "__main__":
|
403 |
port = int(os.environ.get("PORT", 7860))
|
404 |
-
uvicorn.run(
|
405 |
-
app,
|
406 |
-
host="0.0.0.0",
|
407 |
-
port=port,
|
408 |
-
log_level="info",
|
409 |
-
access_log=False # Disable access log for better performance
|
410 |
-
)
|
|
|
1 |
import os
|
2 |
import uvicorn
|
3 |
+
from fastapi import FastAPI, HTTPException
|
|
|
|
|
4 |
from fastapi.responses import HTMLResponse
|
5 |
+
from fastapi.staticfiles import StaticFiles
|
6 |
from pydantic import BaseModel
|
7 |
+
from transformers import pipeline
|
8 |
import torch
|
9 |
+
from typing import Optional
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Inisialisasi FastAPI
|
12 |
+
app = FastAPI(title="LyonPoy AI Chat")
|
13 |
|
14 |
+
# All 11 models configuration
|
15 |
MODELS = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
"tinny-llama": {
|
17 |
"name": "Tinny Llama",
|
18 |
"model_path": "Lyon28/Tinny-Llama",
|
19 |
+
"task": "text-generation"
|
|
|
20 |
},
|
21 |
+
"pythia": {
|
22 |
+
"name": "Pythia",
|
23 |
+
"model_path": "Lyon28/Pythia",
|
24 |
+
"task": "text-generation"
|
|
|
25 |
},
|
26 |
"bert-tinny": {
|
27 |
"name": "BERT Tinny",
|
28 |
"model_path": "Lyon28/Bert-Tinny",
|
29 |
+
"task": "text-classification"
|
|
|
30 |
},
|
31 |
"albert-base-v2": {
|
32 |
"name": "ALBERT Base V2",
|
33 |
"model_path": "Lyon28/Albert-Base-V2",
|
34 |
+
"task": "text-classification"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
},
|
36 |
"t5-small": {
|
37 |
"name": "T5 Small",
|
38 |
"model_path": "Lyon28/T5-Small",
|
39 |
+
"task": "text2text-generation"
|
|
|
40 |
},
|
41 |
+
"gpt-2": {
|
42 |
+
"name": "GPT-2",
|
43 |
+
"model_path": "Lyon28/GPT-2",
|
44 |
+
"task": "text-generation"
|
|
|
45 |
},
|
46 |
"gpt-neo": {
|
47 |
"name": "GPT-Neo",
|
48 |
"model_path": "Lyon28/GPT-Neo",
|
49 |
+
"task": "text-generation"
|
50 |
+
},
|
51 |
+
"distilbert-base-uncased": {
|
52 |
+
"name": "DistilBERT",
|
53 |
+
"model_path": "Lyon28/Distilbert-Base-Uncased",
|
54 |
+
"task": "text-classification"
|
55 |
+
},
|
56 |
+
"distil-gpt-2": {
|
57 |
+
"name": "DistilGPT-2",
|
58 |
+
"model_path": "Lyon28/Distil_GPT-2",
|
59 |
+
"task": "text-generation"
|
60 |
+
},
|
61 |
+
"gpt-2-tinny": {
|
62 |
+
"name": "GPT-2 Tinny",
|
63 |
+
"model_path": "Lyon28/GPT-2-Tinny",
|
64 |
+
"task": "text-generation"
|
65 |
+
},
|
66 |
+
"electra-small": {
|
67 |
+
"name": "ELECTRA Small",
|
68 |
+
"model_path": "Lyon28/Electra-Small",
|
69 |
+
"task": "text-classification"
|
70 |
}
|
71 |
}
|
72 |
|
73 |
class ChatRequest(BaseModel):
|
74 |
message: str
|
75 |
+
model: Optional[str] = "gpt-2"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
# Startup
|
78 |
@app.on_event("startup")
|
79 |
async def load_models():
|
80 |
+
app.state.pipelines = {}
|
81 |
+
os.environ['HF_HOME'] = '/tmp/.cache/huggingface'
|
82 |
os.makedirs(os.environ['HF_HOME'], exist_ok=True)
|
83 |
+
print("🤖 LyonPoy AI Chat Ready!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
# Frontend route
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
@app.get("/", response_class=HTMLResponse)
|
87 |
async def get_frontend():
|
88 |
html_content = '''
|
|
|
91 |
<head>
|
92 |
<meta charset="UTF-8">
|
93 |
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
94 |
+
<title>LyonPoy AI Chat</title>
|
95 |
<style>
|
96 |
* { margin: 0; padding: 0; box-sizing: border-box; }
|
97 |
+
body {
|
98 |
+
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
|
99 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
100 |
+
height: 100vh; display: flex; justify-content: center; align-items: center;
|
101 |
+
}
|
102 |
+
.chat-container {
|
103 |
+
width: 400px; height: 600px; background: #fff; border-radius: 15px;
|
104 |
+
box-shadow: 0 20px 40px rgba(0,0,0,0.15); display: flex; flex-direction: column; overflow: hidden;
|
105 |
+
}
|
106 |
+
.chat-header {
|
107 |
+
background: linear-gradient(135deg, #25d366, #128c7e); color: white;
|
108 |
+
padding: 20px; text-align: center;
|
109 |
+
}
|
110 |
+
.chat-header h1 { font-size: 18px; font-weight: 600; margin-bottom: 8px; }
|
111 |
+
.model-selector {
|
112 |
+
background: rgba(255,255,255,0.2); border: none; color: white;
|
113 |
+
padding: 8px 12px; border-radius: 20px; font-size: 12px; cursor: pointer;
|
114 |
+
}
|
115 |
+
.chat-messages {
|
116 |
+
flex: 1; padding: 20px; overflow-y: auto; background: #f0f0f0;
|
117 |
+
display: flex; flex-direction: column; gap: 15px;
|
118 |
+
}
|
119 |
+
.message {
|
120 |
+
max-width: 80%; padding: 12px 16px; border-radius: 15px;
|
121 |
+
font-size: 14px; line-height: 1.4; animation: slideIn 0.3s ease;
|
122 |
+
}
|
123 |
+
.message.user {
|
124 |
+
background: #25d366; color: white; align-self: flex-end; border-bottom-right-radius: 5px;
|
125 |
+
}
|
126 |
+
.message.bot {
|
127 |
+
background: white; color: #333; align-self: flex-start;
|
128 |
+
border-bottom-left-radius: 5px; box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
129 |
+
}
|
130 |
+
.message-time { font-size: 11px; opacity: 0.7; margin-top: 5px; }
|
131 |
+
.chat-input-container {
|
132 |
+
padding: 20px; background: white; border-top: 1px solid #e0e0e0;
|
133 |
+
display: flex; gap: 10px; align-items: center;
|
134 |
+
}
|
135 |
+
.chat-input {
|
136 |
+
flex: 1; padding: 12px 16px; border: 1px solid #e0e0e0;
|
137 |
+
border-radius: 25px; font-size: 14px; outline: none;
|
138 |
+
}
|
139 |
+
.chat-input:focus { border-color: #25d366; box-shadow: 0 0 0 2px rgba(37, 211, 102, 0.2); }
|
140 |
+
.send-button {
|
141 |
+
background: #25d366; color: white; border: none; border-radius: 50%;
|
142 |
+
width: 45px; height: 45px; cursor: pointer; display: flex;
|
143 |
+
align-items: center; justify-content: center;
|
144 |
+
}
|
145 |
+
.send-button:hover { background: #128c7e; }
|
146 |
+
.send-button:disabled { background: #ccc; cursor: not-allowed; }
|
147 |
+
.welcome-message {
|
148 |
+
text-align: center; color: #666; font-size: 13px;
|
149 |
+
padding: 20px; border-radius: 10px; background: rgba(255,255,255,0.7);
|
150 |
+
}
|
151 |
+
.typing-indicator {
|
152 |
+
display: none; align-items: center; gap: 5px; padding: 12px 16px;
|
153 |
+
background: white; border-radius: 15px; align-self: flex-start;
|
154 |
+
}
|
155 |
+
.typing-dot {
|
156 |
+
width: 8px; height: 8px; background: #999; border-radius: 50%;
|
157 |
+
animation: typing 1.4s infinite;
|
158 |
+
}
|
159 |
+
.typing-dot:nth-child(2) { animation-delay: 0.2s; }
|
160 |
+
.typing-dot:nth-child(3) { animation-delay: 0.4s; }
|
161 |
+
@keyframes typing { 0%, 60%, 100% { transform: translateY(0); } 30% { transform: translateY(-10px); } }
|
162 |
+
@keyframes slideIn { from { opacity: 0; transform: translateY(20px); } to { opacity: 1; transform: translateY(0); } }
|
163 |
+
@media (max-width: 480px) { .chat-container { width: 100vw; height: 100vh; border-radius: 0; } }
|
164 |
</style>
|
165 |
</head>
|
166 |
<body>
|
167 |
+
<div class="chat-container">
|
168 |
+
<div class="chat-header">
|
169 |
+
<h1>🤖 LyonPoy AI Chat</h1>
|
170 |
+
<select class="model-selector" id="modelSelect">
|
171 |
+
<option value="gpt-2">GPT-2 (General)</option>
|
|
|
172 |
<option value="tinny-llama">Tinny Llama</option>
|
173 |
+
<option value="pythia">Pythia</option>
|
174 |
+
<option value="gpt-neo">GPT-Neo</option>
|
175 |
+
<option value="distil-gpt-2">DistilGPT-2</option>
|
176 |
+
<option value="gpt-2-tinny">GPT-2 Tinny</option>
|
177 |
<option value="bert-tinny">BERT Tinny</option>
|
178 |
<option value="albert-base-v2">ALBERT Base V2</option>
|
179 |
<option value="distilbert-base-uncased">DistilBERT</option>
|
180 |
<option value="electra-small">ELECTRA Small</option>
|
181 |
<option value="t5-small">T5 Small</option>
|
|
|
|
|
182 |
</select>
|
183 |
</div>
|
184 |
+
<div class="chat-messages" id="chatMessages">
|
185 |
+
<div class="welcome-message">
|
186 |
+
👋 Halo! Saya LyonPoy AI Assistant.<br>
|
187 |
+
Pilih model di atas dan mulai chat dengan saya!
|
188 |
+
</div>
|
189 |
+
</div>
|
190 |
+
<div class="typing-indicator" id="typingIndicator">
|
191 |
+
<div class="typing-dot"></div><div class="typing-dot"></div><div class="typing-dot"></div>
|
192 |
+
</div>
|
193 |
+
<div class="chat-input-container">
|
194 |
+
<input type="text" class="chat-input" id="chatInput" placeholder="Ketik pesan..." maxlength="500">
|
195 |
+
<button class="send-button" id="sendButton">➤</button>
|
196 |
</div>
|
197 |
</div>
|
|
|
198 |
<script>
|
199 |
+
const chatMessages = document.getElementById('chatMessages');
|
200 |
+
const chatInput = document.getElementById('chatInput');
|
201 |
+
const sendButton = document.getElementById('sendButton');
|
202 |
+
const modelSelect = document.getElementById('modelSelect');
|
203 |
+
const typingIndicator = document.getElementById('typingIndicator');
|
204 |
+
|
205 |
+
function scrollToBottom() { chatMessages.scrollTop = chatMessages.scrollHeight; }
|
206 |
|
207 |
function addMessage(content, isUser = false) {
|
208 |
+
const messageDiv = document.createElement('div');
|
209 |
+
messageDiv.className = `message ${isUser ? 'user' : 'bot'}`;
|
210 |
+
const time = new Date().toLocaleTimeString('id-ID', { hour: '2-digit', minute: '2-digit' });
|
211 |
+
messageDiv.innerHTML = `${content}<div class="message-time">${time}</div>`;
|
212 |
+
chatMessages.appendChild(messageDiv);
|
213 |
+
scrollToBottom();
|
214 |
}
|
215 |
+
|
216 |
+
function showTyping() { typingIndicator.style.display = 'flex'; scrollToBottom(); }
|
217 |
+
function hideTyping() { typingIndicator.style.display = 'none'; }
|
218 |
+
|
219 |
async function sendMessage() {
|
220 |
+
const message = chatInput.value.trim();
|
221 |
if (!message) return;
|
222 |
+
|
223 |
+
chatInput.disabled = true; sendButton.disabled = true;
|
224 |
+
addMessage(message, true); chatInput.value = ''; showTyping();
|
225 |
+
|
|
|
|
|
|
|
226 |
try {
|
227 |
const response = await fetch('/chat', {
|
228 |
method: 'POST',
|
229 |
headers: { 'Content-Type': 'application/json' },
|
230 |
+
body: JSON.stringify({ message: message, model: modelSelect.value })
|
|
|
|
|
|
|
231 |
});
|
|
|
232 |
const data = await response.json();
|
233 |
+
hideTyping();
|
|
|
|
|
|
|
|
|
234 |
if (data.status === 'success') {
|
235 |
+
addMessage(data.response);
|
236 |
} else {
|
237 |
+
addMessage('❌ Maaf, terjadi kesalahan. Coba lagi nanti.');
|
238 |
}
|
239 |
} catch (error) {
|
240 |
+
hideTyping();
|
241 |
+
addMessage('❌ Tidak dapat terhubung ke server.');
|
242 |
}
|
243 |
+
chatInput.disabled = false; sendButton.disabled = false; chatInput.focus();
|
244 |
}
|
245 |
+
|
246 |
+
sendButton.addEventListener('click', sendMessage);
|
247 |
+
chatInput.addEventListener('keypress', (e) => { if (e.key === 'Enter') sendMessage(); });
|
248 |
+
modelSelect.addEventListener('change', () => {
|
249 |
+
const modelName = modelSelect.options[modelSelect.selectedIndex].text;
|
250 |
+
addMessage(`🔄 Model diubah ke: ${modelName}`);
|
251 |
});
|
252 |
+
window.addEventListener('load', () => chatInput.focus());
|
|
|
|
|
253 |
</script>
|
254 |
</body>
|
255 |
</html>
|
256 |
'''
|
257 |
return HTMLResponse(content=html_content)
|
258 |
|
259 |
+
# Chat API
|
260 |
@app.post("/chat")
|
261 |
+
async def chat(request: ChatRequest):
|
262 |
try:
|
263 |
model_id = request.model.lower()
|
264 |
if model_id not in MODELS:
|
265 |
raise HTTPException(status_code=400, detail="Model tidak tersedia")
|
266 |
|
267 |
+
model_config = MODELS[model_id]
|
|
|
268 |
|
269 |
+
# Load model jika belum ada
|
270 |
+
if model_id not in app.state.pipelines:
|
271 |
+
print(f"⏳ Loading {model_config['name']}...")
|
272 |
+
device = 0 if torch.cuda.is_available() else -1
|
273 |
+
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
274 |
+
|
275 |
+
app.state.pipelines[model_id] = pipeline(
|
276 |
+
task=model_config["task"],
|
277 |
+
model=model_config["model_path"],
|
278 |
+
device=device,
|
279 |
+
torch_dtype=dtype
|
280 |
+
)
|
281 |
|
282 |
+
pipe = app.state.pipelines[model_id]
|
|
|
283 |
|
284 |
+
# Process berdasarkan task
|
285 |
+
if model_config["task"] == "text-generation":
|
286 |
+
result = pipe(
|
287 |
+
request.message,
|
288 |
+
max_length=min(len(request.message.split()) + 50, 200),
|
289 |
+
temperature=0.7,
|
290 |
+
do_sample=True,
|
291 |
+
pad_token_id=pipe.tokenizer.eos_token_id
|
292 |
+
)[0]['generated_text']
|
293 |
+
|
294 |
+
# Clean output
|
295 |
+
if result.startswith(request.message):
|
296 |
+
result = result[len(request.message):].strip()
|
297 |
+
|
298 |
+
elif model_config["task"] == "text-classification":
|
299 |
+
output = pipe(request.message)[0]
|
300 |
+
result = f"Sentimen: {output['label']} (Confidence: {output['score']:.2f})"
|
301 |
+
|
302 |
+
elif model_config["task"] == "text2text-generation":
|
303 |
+
result = pipe(request.message, max_length=150)[0]['generated_text']
|
304 |
|
305 |
+
return {"response": result, "model": model_config["name"], "status": "success"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
|
|
|
|
|
|
|
|
307 |
except Exception as e:
|
308 |
+
print(f"❌ Error: {e}")
|
309 |
+
raise HTTPException(status_code=500, detail="Terjadi kesalahan")
|
310 |
|
311 |
+
# Health check
|
312 |
@app.get("/health")
|
313 |
async def health():
|
314 |
+
return {"status": "healthy", "gpu": torch.cuda.is_available()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
+
# Run app
|
317 |
if __name__ == "__main__":
|
318 |
port = int(os.environ.get("PORT", 7860))
|
319 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
|
|
|
|
|
|
|
|
|
|
|