File size: 9,382 Bytes
ef51ddd
a8b6e59
7833553
ef51ddd
a8b6e59
 
 
7833553
 
ef51ddd
 
019d245
 
a8b6e59
ef51ddd
a8b6e59
 
 
 
 
 
 
848c7e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8b6e59
 
 
 
 
 
ef51ddd
a8b6e59
 
ef51ddd
 
c5bcdb3
 
 
 
 
 
 
 
 
 
ef51ddd
 
 
 
019d245
 
7833553
a8b6e59
ef51ddd
f737f82
a06fc9e
 
 
019d245
 
9b896b6
 
 
 
019d245
a06fc9e
019d245
ef51ddd
a06fc9e
019d245
 
 
 
 
9b896b6
019d245
 
 
 
 
ef51ddd
7833553
 
 
c5bcdb3
 
7833553
95897a7
c5bcdb3
7833553
 
 
 
c5bcdb3
 
 
 
 
 
7833553
 
 
 
c5bcdb3
 
7833553
 
c5bcdb3
7833553
 
c5bcdb3
7833553
c5bcdb3
 
7833553
 
 
c5bcdb3
 
7833553
c5bcdb3
 
7833553
 
f737f82
ef51ddd
c5bcdb3
 
 
 
 
ef51ddd
c5bcdb3
38f97a7
c5bcdb3
38f97a7
 
 
 
 
 
 
 
c5bcdb3
38f97a7
 
 
c5bcdb3
38f97a7
c5bcdb3
 
 
 
38f97a7
 
 
c5bcdb3
38f97a7
 
 
 
 
 
 
 
 
c5bcdb3
38f97a7
 
c5bcdb3
 
019d245
 
ef51ddd
019d245
9b896b6
019d245
c5bcdb3
 
a8b6e59
c5bcdb3
 
a8b6e59
ef51ddd
019d245
 
c5bcdb3
 
5ace2c9
 
 
 
 
c5bcdb3
 
 
 
 
 
 
 
5ace2c9
 
 
 
 
c5bcdb3
 
 
 
 
 
 
a8b6e59
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import re
import tempfile

import torch
import gradio as gr
from transformers import pipeline
from pydub import AudioSegment
from pyannote.audio import Pipeline as DiarizationPipeline

import spaces  # zeroGPU support
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess

# —————— Model Lists ——————
WHISPER_MODELS = [
    "openai/whisper-large-v3-turbo",
    "openai/whisper-large-v3",
    "openai/whisper-tiny",
    "openai/whisper-small",
    "openai/whisper-medium",
    "openai/whisper-base",
    "JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW",
    "Jingmiao/whisper-small-zh_tw",
    "DDTChen/whisper-medium-zh-tw",
    "kimbochen/whisper-small-zh-tw",
    "JacobLinCool/whisper-large-v3-turbo-zh-TW-clean-1",
    "JunWorks/whisper-small-zhTW",
    "WANGTINGTING/whisper-large-v2-zh-TW-vol2",
    "xmzhu/whisper-tiny-zh-TW",
    "ingrenn/whisper-small-common-voice-13-zh-TW",
    "jun-han/whisper-small-zh-TW",
    "xmzhu/whisper-tiny-zh-TW-baseline",
    "JacobLinCool/whisper-large-v3-turbo-common_voice_16_1-zh-TW-2",
    "JacobLinCool/whisper-large-v3-common_voice_19_0-zh-TW-full-1",
    "momo103197/whisper-small-zh-TW-mix",
    "JacobLinCool/whisper-large-v3-turbo-zh-TW-clean-1-merged",
    "JacobLinCool/whisper-large-v2-common_voice_19_0-zh-TW-full-1",
    "kimas1269/whisper-meduim_zhtw",
    "JunWorks/whisper-base-zhTW",
    "JunWorks/whisper-small-zhTW-frozenDecoder",
    "sandy1990418/whisper-large-v3-turbo-zh-tw",
    "JacobLinCool/whisper-large-v3-turbo-common_voice_16_1-zh-TW-pissa-merged",
    "momo103197/whisper-small-zh-TW-16",
    "k1nto/Belle-whisper-large-v3-zh-punct-ct2"
]
SENSEVOICE_MODELS = [
    "FunAudioLLM/SenseVoiceSmall",
    "AXERA-TECH/SenseVoice",
    "alextomcat/SenseVoiceSmall",
    "ChenChenyu/SenseVoiceSmall-finetuned",
    "apinge/sensevoice-small",
]

# —————— Language Options ——————
WHISPER_LANGUAGES = [
    "auto", "af","am","ar","as","az","ba","be","bg","bn","bo",
    "br","bs","ca","cs","cy","da","de","el","en","es","et",
    "eu","fa","fi","fo","fr","gl","gu","ha","haw","he","hi",
    "hr","ht","hu","hy","id","is","it","ja","jw","ka","kk",
    "km","kn","ko","la","lb","ln","lo","lt","lv","mg","mi",
    "mk","ml","mn","mr","ms","mt","my","ne","nl","nn","no",
    "oc","pa","pl","ps","pt","ro","ru","sa","sd","si","sk",
    "sl","sn","so","sq","sr","su","sv","sw","ta","te","tg",
    "th","tk","tl","tr","tt","uk","ur","uz","vi","yi","yo",
    "zh","yue"
]
SENSEVOICE_LANGUAGES = ["auto", "zh", "yue", "en", "ja", "ko", "nospeech"]

# —————— Caches ——————
whisper_pipes = {}
sense_models = {}
dar_pipe = None

# —————— Helpers ——————
def get_whisper_pipe(model_id: str, device: int):
    key = (model_id, device)
    if key not in whisper_pipes:
        whisper_pipes[key] = pipeline(
            "automatic-speech-recognition",
            model=model_id,
            device=device,
            chunk_length_s=30,
            stride_length_s=5,
            return_timestamps=False,
        )
    return whisper_pipes[key]


def get_sense_model(model_id: str):
    if model_id not in sense_models:
        device_str = "cuda:0" if torch.cuda.is_available() else "cpu"
        sense_models[model_id] = AutoModel(
            model=model_id,
            vad_model="fsmn-vad",
            vad_kwargs={"max_single_segment_time": 300000},
            device=device_str,
            hub="hf",
        )
    return sense_models[model_id]


def get_diarization_pipe():
    global dar_pipe
    if dar_pipe is None:
        # Pull token from environment (HF_TOKEN or HUGGINGFACE_TOKEN)
        token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_TOKEN")
        dar_pipe = DiarizationPipeline.from_pretrained(
            "pyannote/speaker-diarization-3.1",
            use_auth_token=token or True
        )
    return dar_pipe

# —————— Transcription Functions ——————
def transcribe_whisper(model_id: str,
                       language: str,
                       audio_path: str,
                       device_sel: str,
                       enable_diar: bool):
    # select device: 0 for GPU, -1 for CPU
    use_gpu = (device_sel == "GPU" and torch.cuda.is_available())
    device = 0 if use_gpu else -1
    pipe = get_whisper_pipe(model_id, device)
    # full transcription
    result = (pipe(audio_path) if language == "auto"
              else pipe(audio_path, generate_kwargs={"language": language}))
    transcript = result.get("text", "").strip()
    diar_text = ""
    # optional speaker diarization
    if enable_diar:
        diarizer = get_diarization_pipe()
        diary = diarizer(audio_path)
        snippets = []
        for turn, _, speaker in diary.itertracks(yield_label=True):
            start_ms, end_ms = int(turn.start*1000), int(turn.end*1000)
            segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
            with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
                segment.export(tmp.name, format="wav")
                seg_out = (pipe(tmp.name) if language == "auto"
                           else pipe(tmp.name, generate_kwargs={"language": language}))
            os.unlink(tmp.name)
            text = seg_out.get("text", "").strip()
            snippets.append(f"[{speaker}] {text}")
        diar_text = "\n".join(snippets)
    return transcript, diar_text

@spaces.GPU
def transcribe_sense(model_id: str,
                     language: str,
                     audio_path: str,
                     enable_punct: bool,
                     enable_diar: bool):
    model = get_sense_model(model_id)
    # no diarization
    if not enable_diar:
        segs = model.generate(
            input=audio_path,
            cache={},
            language=language,
            use_itn=True,
            batch_size_s=300,
            merge_vad=True,
            merge_length_s=15,
        )
        text = rich_transcription_postprocess(segs[0]['text'])
        if not enable_punct:
            text = re.sub(r"[^\w\s]", "", text)
        return text, ""
    # with diarization
    diarizer = get_diarization_pipe()
    diary = diarizer(audio_path)
    snippets = []
    for turn, _, speaker in diary.itertracks(yield_label=True):
        start_ms, end_ms = int(turn.start*1000), int(turn.end*1000)
        segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
            segment.export(tmp.name, format="wav")
            segs = model.generate(
                input=tmp.name,
                cache={},
                language=language,
                use_itn=True,
                batch_size_s=300,
                merge_vad=False,
                merge_length_s=0,
            )
        os.unlink(tmp.name)
        txt = rich_transcription_postprocess(segs[0]['text'])
        if not enable_punct:
            txt = re.sub(r"[^\w\s]", "", txt)
        snippets.append(f"[{speaker}] {txt}")
    full = rich_transcription_postprocess(model.generate(
        input=audio_path,
        cache={},
        language=language,
        use_itn=True,
        batch_size_s=300,
        merge_vad=True,
        merge_length_s=15
    )[0]['text'])
    if not enable_punct:
        full = re.sub(r"[^\w\s]", "", full)
    return full, "\n".join(snippets)

# —————— Gradio UI ——————
demo = gr.Blocks()
with demo:
    gr.Markdown("## Whisper vs. SenseVoice (Language, Device & Diarization)")
    audio_input = gr.Audio(sources=["upload","microphone"], type="filepath", label="Audio Input")
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Whisper ASR")
            whisper_dd = gr.Dropdown(choices=WHISPER_MODELS, value=WHISPER_MODELS[0], label="Whisper Model")
            whisper_lang = gr.Dropdown(choices=WHISPER_LANGUAGES, value="auto", label="Whisper Language")
            device_radio = gr.Radio(choices=["GPU","CPU"], value="GPU", label="Device")
            diar_check = gr.Checkbox(label="Enable Diarization")
            btn_w = gr.Button("Transcribe with Whisper")
            out_w = gr.Textbox(label="Transcript")
            out_w_d = gr.Textbox(label="Diarized Transcript")
            btn_w.click(fn=transcribe_whisper,
                        inputs=[whisper_dd, whisper_lang, audio_input, device_radio, diar_check],
                        outputs=[out_w, out_w_d])
        with gr.Column():
            gr.Markdown("### FunASR SenseVoice ASR")
            sense_dd = gr.Dropdown(choices=SENSEVOICE_MODELS, value=SENSEVOICE_MODELS[0], label="SenseVoice Model")
            sense_lang = gr.Dropdown(choices=SENSEVOICE_LANGUAGES, value="auto", label="SenseVoice Language")
            punct = gr.Checkbox(label="Enable Punctuation", value=True)
            diar_s = gr.Checkbox(label="Enable Diarization")
            btn_s = gr.Button("Transcribe with SenseVoice")
            out_s = gr.Textbox(label="Transcript")
            out_s_d = gr.Textbox(label="Diarized Transcript")
            btn_s.click(fn=transcribe_sense,
                        inputs=[sense_dd, sense_lang, audio_input, punct, diar_s],
                        outputs=[out_s, out_s_d])
if __name__ == "__main__":
    demo.launch()