Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
from langdetect import detect
|
4 |
-
from
|
5 |
import numpy as np
|
6 |
import re
|
7 |
import random
|
@@ -28,70 +28,28 @@ def load_and_preprocess_files():
|
|
28 |
|
29 |
return knowledge_base
|
30 |
|
31 |
-
# Инициализация модели
|
32 |
-
def
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
# Поиск релевантной информации
|
36 |
-
def
|
37 |
-
|
38 |
for category, paragraphs in knowledge_base.items():
|
39 |
-
|
40 |
-
all_fragments.append((para, category))
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
embeddings = model.encode(texts)
|
47 |
-
question_embedding = model.encode([question])
|
48 |
-
|
49 |
-
similarities = np.dot(embeddings, question_embedding.T).flatten()
|
50 |
-
top_indices = similarities.argsort()[-top_k:][::-1]
|
51 |
-
|
52 |
-
return [all_fragments[i] for i in top_indices]
|
53 |
|
54 |
-
# Генерация
|
55 |
-
def
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
question_type = "о них"
|
60 |
-
if "вампир" in question.lower():
|
61 |
-
question_type = "о вампирах"
|
62 |
-
elif "оборотн" in question.lower() or "волколак" in question.lower():
|
63 |
-
question_type = "об оборотнях"
|
64 |
-
elif "человек" in question.lower() or "люди" in question.lower():
|
65 |
-
question_type = "о людях"
|
66 |
-
|
67 |
-
unique_info = []
|
68 |
-
seen = set()
|
69 |
-
for para, category in relevant_info:
|
70 |
-
if para not in seen:
|
71 |
-
unique_info.append((para, category))
|
72 |
-
seen.add(para)
|
73 |
-
|
74 |
-
response = f"Вот что мне известно {question_type}:\n\n"
|
75 |
-
|
76 |
-
for i, (para, category) in enumerate(unique_info, 1):
|
77 |
-
if para.startswith("- "):
|
78 |
-
para = para.replace("\n- ", "\n• ").replace("- ", "• ")
|
79 |
-
|
80 |
-
if len(set(c for _, c in unique_info)) > 1:
|
81 |
-
response += f"{i}. ({category.capitalize()}) {para}\n\n"
|
82 |
-
else:
|
83 |
-
response += f"{i}. {para}\n\n"
|
84 |
-
|
85 |
-
endings = [
|
86 |
-
"Надеюсь, эта информация была полезной!",
|
87 |
-
"Если хотите узнать больше деталей, уточните вопрос.",
|
88 |
-
"Могу уточнить какие-то моменты, если нужно.",
|
89 |
-
"Это основные сведения, которые у меня есть."
|
90 |
-
]
|
91 |
-
|
92 |
-
response += random.choice(endings)
|
93 |
-
|
94 |
-
return response
|
95 |
|
96 |
# Обработка вопроса
|
97 |
def process_question(question, history):
|
@@ -104,11 +62,15 @@ def process_question(question, history):
|
|
104 |
if not hasattr(process_question, 'knowledge_base'):
|
105 |
process_question.knowledge_base = load_and_preprocess_files()
|
106 |
|
107 |
-
if not hasattr(process_question, '
|
108 |
-
process_question.
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
|
|
112 |
history.append((question, answer))
|
113 |
return "", history
|
114 |
|
@@ -117,14 +79,12 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
117 |
gr.Markdown("""<h1 style='text-align: center'>🧛♂️ Мир сверхъестественного 🐺</h1>""")
|
118 |
gr.Markdown("""<div style='text-align: center'>Задавайте вопросы о вампирах, оборотнях и людях на русском языке</div>""")
|
119 |
|
120 |
-
# Сначала определяем элементы ввода
|
121 |
msg = gr.Textbox(
|
122 |
label="Ваш вопрос",
|
123 |
placeholder="Введите вопрос и нажмите Enter...",
|
124 |
container=False
|
125 |
)
|
126 |
|
127 |
-
# Затем определяем примеры, которые используют msg
|
128 |
examples = gr.Examples(
|
129 |
examples=[
|
130 |
"Какие слабости у вампиров?",
|
@@ -136,7 +96,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
136 |
label="Примеры вопросов:"
|
137 |
)
|
138 |
|
139 |
-
# Затем определяем чат
|
140 |
chatbot = gr.Chatbot(
|
141 |
label="Диалог",
|
142 |
height=500
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
from langdetect import detect
|
4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering
|
5 |
import numpy as np
|
6 |
import re
|
7 |
import random
|
|
|
28 |
|
29 |
return knowledge_base
|
30 |
|
31 |
+
# Инициализация модели вопрос-ответ
|
32 |
+
def initialize_qa_model():
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained('DeepPavlov/rubert-base-cased')
|
34 |
+
model = AutoModelForQuestionAnswering.from_pretrained('DeepPavlov/rubert-base-cased')
|
35 |
+
qa_pipeline = pipeline('question-answering', model=model, tokenizer=tokenizer)
|
36 |
+
return qa_pipeline
|
37 |
|
38 |
# Поиск релевантной информации
|
39 |
+
def find_relevant_context(question, knowledge_base):
|
40 |
+
all_paragraphs = []
|
41 |
for category, paragraphs in knowledge_base.items():
|
42 |
+
all_paragraphs.extend(paragraphs)
|
|
|
43 |
|
44 |
+
# Чтобы не работать по всей базе, берём случайные 10 абзацев (упрощённый вариант, можно сделать лучше)
|
45 |
+
sample_paragraphs = random.sample(all_paragraphs, min(10, len(all_paragraphs)))
|
46 |
+
context = " ".join(sample_paragraphs)
|
47 |
+
return context
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Генерация ответа через модель
|
50 |
+
def generate_answer(question, context, qa_pipeline):
|
51 |
+
result = qa_pipeline(question=question, context=context)
|
52 |
+
return result['answer']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# Обработка вопроса
|
55 |
def process_question(question, history):
|
|
|
62 |
if not hasattr(process_question, 'knowledge_base'):
|
63 |
process_question.knowledge_base = load_and_preprocess_files()
|
64 |
|
65 |
+
if not hasattr(process_question, 'qa_pipeline'):
|
66 |
+
process_question.qa_pipeline = initialize_qa_model()
|
67 |
+
|
68 |
+
context = find_relevant_context(question, process_question.knowledge_base)
|
69 |
+
answer = generate_answer(question, context, process_question.qa_pipeline)
|
70 |
|
71 |
+
if not answer.strip():
|
72 |
+
answer = "Извините, я не смог найти точный ответ. Попробуйте перефо��мулировать вопрос."
|
73 |
+
|
74 |
history.append((question, answer))
|
75 |
return "", history
|
76 |
|
|
|
79 |
gr.Markdown("""<h1 style='text-align: center'>🧛♂️ Мир сверхъестественного 🐺</h1>""")
|
80 |
gr.Markdown("""<div style='text-align: center'>Задавайте вопросы о вампирах, оборотнях и людях на русском языке</div>""")
|
81 |
|
|
|
82 |
msg = gr.Textbox(
|
83 |
label="Ваш вопрос",
|
84 |
placeholder="Введите вопрос и нажмите Enter...",
|
85 |
container=False
|
86 |
)
|
87 |
|
|
|
88 |
examples = gr.Examples(
|
89 |
examples=[
|
90 |
"Какие слабости у вампиров?",
|
|
|
96 |
label="Примеры вопросов:"
|
97 |
)
|
98 |
|
|
|
99 |
chatbot = gr.Chatbot(
|
100 |
label="Диалог",
|
101 |
height=500
|