Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,153 @@
|
|
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import uvicorn
|
4 |
-
from fastapi import FastAPI
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
import numpy as np
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
#
|
22 |
-
def
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
#
|
45 |
-
def
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
def ask_question(q: str):
|
57 |
-
answer = find_best_answer(q)
|
58 |
-
return {"question": q, "answer": answer}
|
|
|
1 |
+
import gradio as gr
|
2 |
import os
|
3 |
+
from langdetect import detect
|
|
|
|
|
4 |
from sentence_transformers import SentenceTransformer
|
|
|
5 |
import numpy as np
|
6 |
+
import re
|
7 |
+
import random
|
8 |
|
9 |
+
# Загрузка и предварительная обработка текстовых файлов
|
10 |
+
def load_and_preprocess_files():
|
11 |
+
files = {
|
12 |
+
"vampires": "vampires.txt",
|
13 |
+
"werewolves": "werewolves.txt",
|
14 |
+
"humans": "humans.txt"
|
15 |
+
}
|
16 |
+
|
17 |
+
knowledge_base = {}
|
18 |
+
for category, filename in files.items():
|
19 |
+
try:
|
20 |
+
with open(filename, 'r', encoding='utf-8') as file:
|
21 |
+
content = file.read()
|
22 |
+
# Разбиваем на осмысленные блоки (абзацы)
|
23 |
+
paragraphs = [p.strip() for p in content.split('\n\n') if p.strip()]
|
24 |
+
knowledge_base[category] = paragraphs
|
25 |
+
except FileNotFoundError:
|
26 |
+
print(f"Файл {filename} не найден")
|
27 |
+
knowledge_base[category] = []
|
28 |
+
|
29 |
+
return knowledge_base
|
30 |
|
31 |
+
# Инициализация модели для семантического поиска
|
32 |
+
def initialize_search_model():
|
33 |
+
return SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
34 |
|
35 |
+
# Поиск релевантной информации
|
36 |
+
def find_relevant_info(question, knowledge_base, model, top_k=3):
|
37 |
+
all_fragments = []
|
38 |
+
for category, paragraphs in knowledge_base.items():
|
39 |
+
for para in paragraphs:
|
40 |
+
all_fragments.append((para, category))
|
41 |
+
|
42 |
+
if not all_fragments:
|
43 |
+
return []
|
44 |
+
|
45 |
+
texts = [f[0] for f in all_fragments]
|
46 |
+
embeddings = model.encode(texts)
|
47 |
+
question_embedding = model.encode([question])
|
48 |
+
|
49 |
+
similarities = np.dot(embeddings, question_embedding.T).flatten()
|
50 |
+
top_indices = similarities.argsort()[-top_k:][::-1]
|
51 |
+
|
52 |
+
return [all_fragments[i] for i in top_indices]
|
53 |
|
54 |
+
# Генерация естественного ответа
|
55 |
+
def generate_natural_response(question, relevant_info):
|
56 |
+
if not relevant_info:
|
57 |
+
return "Извините, не нашел информации по вашему вопросу. Попробуйте переформулировать."
|
58 |
+
|
59 |
+
question_type = "о них"
|
60 |
+
if "вампир" in question.lower():
|
61 |
+
question_type = "о вампирах"
|
62 |
+
elif "оборотн" in question.lower() or "волколак" in question.lower():
|
63 |
+
question_type = "об оборотнях"
|
64 |
+
elif "человек" in question.lower() or "люди" in question.lower():
|
65 |
+
question_type = "о людях"
|
66 |
+
|
67 |
+
unique_info = []
|
68 |
+
seen = set()
|
69 |
+
for para, category in relevant_info:
|
70 |
+
if para not in seen:
|
71 |
+
unique_info.append((para, category))
|
72 |
+
seen.add(para)
|
73 |
+
|
74 |
+
response = f"Вот что мне известно {question_type}:\n\n"
|
75 |
+
|
76 |
+
for i, (para, category) in enumerate(unique_info, 1):
|
77 |
+
if para.startswith("- "):
|
78 |
+
para = para.replace("\n- ", "\n• ").replace("- ", "• ")
|
79 |
+
|
80 |
+
if len(set(c for _, c in unique_info)) > 1:
|
81 |
+
response += f"{i}. ({category.capitalize()}) {para}\n\n"
|
82 |
+
else:
|
83 |
+
response += f"{i}. {para}\n\n"
|
84 |
+
|
85 |
+
endings = [
|
86 |
+
"Надеюсь, эта информация была полезной!",
|
87 |
+
"Если хотите узнать больше деталей, уточните вопрос.",
|
88 |
+
"Могу уточнить какие-то моменты, если нужно.",
|
89 |
+
"Это основные сведения, которые у меня есть."
|
90 |
+
]
|
91 |
+
|
92 |
+
response += random.choice(endings)
|
93 |
+
|
94 |
+
return response
|
95 |
|
96 |
+
# Обработка вопроса
|
97 |
+
def process_question(question, history):
|
98 |
+
try:
|
99 |
+
if detect(question) != 'ru':
|
100 |
+
return "Пожалуйста, задавайте вопросы на русском языке.", history
|
101 |
+
except:
|
102 |
+
pass
|
103 |
+
|
104 |
+
if not hasattr(process_question, 'knowledge_base'):
|
105 |
+
process_question.knowledge_base = load_and_preprocess_files()
|
106 |
+
|
107 |
+
if not hasattr(process_question, 'search_model'):
|
108 |
+
process_question.search_model = initialize_search_model()
|
109 |
+
|
110 |
+
relevant_info = find_relevant_info(question, process_question.knowledge_base, process_question.search_model)
|
111 |
+
answer = generate_natural_response(question, relevant_info)
|
112 |
+
history.append((question, answer))
|
113 |
+
return "", history
|
114 |
|
115 |
+
# Создание интерфейса
|
116 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
117 |
+
gr.Markdown("""<h1 style='text-align: center'>🧛♂️ Мир сверхъестественного 🐺</h1>""")
|
118 |
+
gr.Markdown("""<div style='text-align: center'>Задавайте вопросы о вампирах, оборотнях и людях на русском языке</div>""")
|
119 |
+
|
120 |
+
# Сначала определяем элементы ввода
|
121 |
+
msg = gr.Textbox(
|
122 |
+
label="Ваш вопрос",
|
123 |
+
placeholder="Введите вопрос и нажмите Enter...",
|
124 |
+
container=False
|
125 |
+
)
|
126 |
+
|
127 |
+
# Затем определяем примеры, которые используют msg
|
128 |
+
examples = gr.Examples(
|
129 |
+
examples=[
|
130 |
+
"Какие слабости у вампиров?",
|
131 |
+
"Как защититься от оборотней?",
|
132 |
+
"Чем люди отличаются от других существ?",
|
133 |
+
"Расскажи подробнее о вампирах"
|
134 |
+
],
|
135 |
+
inputs=[msg],
|
136 |
+
label="Примеры вопросов:"
|
137 |
+
)
|
138 |
+
|
139 |
+
# Затем определяем чат
|
140 |
+
chatbot = gr.Chatbot(
|
141 |
+
label="Диалог",
|
142 |
+
height=500
|
143 |
+
)
|
144 |
+
|
145 |
+
with gr.Row():
|
146 |
+
submit = gr.Button("Отправить", variant="primary")
|
147 |
+
clear = gr.Button("Очистить историю")
|
148 |
+
|
149 |
+
submit.click(process_question, [msg, chatbot], [msg, chatbot])
|
150 |
+
msg.submit(process_question, [msg, chatbot], [msg, chatbot])
|
151 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
152 |
|
153 |
+
demo.launch()
|
|
|
|
|
|