File size: 8,853 Bytes
3bc0305 3dc2123 c13ab36 3dc2123 9d5b24b 51ebb55 94adeb8 3dc2123 fbfc3a2 c13ab36 51ebb55 fbfc3a2 3dc2123 51ebb55 fbfc3a2 3dc2123 8a03f45 9d5b24b 51ebb55 8a03f45 51ebb55 8a03f45 51ebb55 8a03f45 51ebb55 8a03f45 51ebb55 8a03f45 51ebb55 8a03f45 51ebb55 8a03f45 51ebb55 8a03f45 51ebb55 8a03f45 51ebb55 8a03f45 51ebb55 8a03f45 51ebb55 8a03f45 51ebb55 8a03f45 51ebb55 9d5b24b 8a03f45 9d5b24b 51ebb55 8a03f45 51ebb55 8a03f45 51ebb55 8a03f45 51ebb55 c13ab36 51ebb55 9d5b24b 51ebb55 3dc2123 51ebb55 fbfc3a2 51ebb55 fbfc3a2 51ebb55 fbfc3a2 51ebb55 fbfc3a2 51ebb55 fbfc3a2 51ebb55 fbfc3a2 51ebb55 9d5b24b fbfc3a2 8a03f45 fbfc3a2 8a03f45 fbfc3a2 8a03f45 fbfc3a2 8a03f45 9d5b24b 8a03f45 51ebb55 8a03f45 51ebb55 8a03f45 51ebb55 8a03f45 51ebb55 9d5b24b 51ebb55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import gradio as gr
from transformers import pipeline
import os
# Añade esto para verificar la versión de Gradio en tiempo de ejecución
print(f"Gradio version at runtime: {gr.__version__}")
# --- Model Loading ---
MODEL_ID = "Light-Dav/sentiment-analysis-full-project"
try:
# Esto carga tu modelo pre-entrenado desde Hugging Face Hub
# top_k=None asegura que se devuelvan las puntuaciones de todas las clases (positivo, negativo, neutral)
sentiment_analyzer = pipeline("sentiment-analysis", model=MODEL_ID, top_k=None)
model_loaded_successfully = True
print("Sentiment analysis model loaded successfully.")
except Exception as e:
print(f"Error loading model: {e}")
sentiment_analyzer = None
model_loaded_successfully = False
print("Sentiment analysis model failed to load. Please check MODEL_ID and network connection.")
# --- Custom CSS for a dark look inspired by the website ---
# Este CSS define todo el aspecto visual sin depender de un tema de Gradio
custom_css = """
body {
background-color: #121212; /* Dark background */
color: #f8f8f2; /* Light text */
}
.gradio-container {
box-shadow: 0 4px 8px rgba(255, 255, 255, 0.1);
border-radius: 10px;
overflow: hidden;
background-color: #1e1e1e; /* Darker card background */
padding: 20px;
margin-bottom: 20px;
}
h1, h2, h3 {
color: #80cbc4; /* Teal/Cyan accents */
text-align: center;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
animation: fadeIn 1s ease-in-out;
}
.gr-button.primary {
background-color: #80cbc4 !important;
color: #1e1e1e !important;
border-radius: 6px;
transition: background-color 0.3s ease;
padding: 10px 20px;
}
.gr-button.primary:hover {
background-color: #26a69a !important;
}
.gradio-output {
border: 1px solid #424242;
border-radius: 8px;
padding: 15px;
margin-top: 15px;
background-color: #212121;
color: #f8f8f2;
}
.sentiment-display {
text-align: center;
padding: 10px;
border-radius: 6px;
margin-top: 10px;
font-size: 1.1em;
font-weight: bold;
}
.sentiment-positive {
background-color: #388e3c; /* Darker green */
color: #e8f5e9; /* Light green */
}
.sentiment-negative {
background-color: #d32f2f; /* Darker red */
color: #ffebee; /* Light red */
}
.sentiment-neutral {
background-color: #1976d2; /* Darker blue */
color: #e3f2fd; /* Light blue */
}
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
/* Estilos para las etiquetas de los componentes de entrada */
gr-textbox > label {
color: #80cbc4;
}
/* Asegúrate de que las etiquetas de salida también tengan color */
.gradio-output .label {
color: #80cbc4; /* Color de acento para las etiquetas de salida */
}
"""
# --- Helper Function for Sentiment Interpretation ---
def interpret_sentiment(label, score):
emoji = ""
description = ""
color_class = ""
if label.lower() == "positive" or label.lower() == "label_2":
emoji = "😊"
description = "This text expresses a **highly positive** sentiment." if score > 0.9 else "This text expresses a **positive** sentiment."
color_class = "sentiment-positive"
elif label.lower() == "negative" or label.lower() == "label_0":
emoji = "😠"
description = "This text expresses a **highly negative** sentiment." if score > 0.9 else "This text expresses a **negative** sentiment."
color_class = "sentiment-negative"
elif label.lower() == "neutral" or label.lower() == "label_1":
emoji = "😐"
description = "This text expresses a **neutral** sentiment."
color_class = "sentiment-neutral"
else:
emoji = "❓"
description = "Could not confidently determine sentiment. Unexpected label."
color_class = ""
return f"<div class='sentiment-display {color_class}'>{emoji} {label.upper()} ({score:.2f})</div>" + \
f"<p>{description}</p>"
# --- Sentiment Analysis Function ---
def analyze_sentiment(text):
if not model_loaded_successfully:
return {
"Overall Sentiment": "<div class='sentiment-display'>⚠️ Model Not Loaded ⚠️</div><p>Please contact the administrator. The sentiment analysis model failed to load.</p>",
"Confidence Scores": {},
"Raw Output": "Model loading failed."
}
if not text.strip():
return {
"Overall Sentiment": "<div class='sentiment-display'>✍️ Please enter some text! ✍️</div><p>Start typing to analyze its sentiment.</p>",
"Confidence Scores": {},
"Raw Output": ""
}
try:
# Asegúrate de que la salida del pipeline es una lista de listas, y toma la primera.
results = sentiment_analyzer(text)[0]
# Ordenar los resultados por puntuación de confianza de mayor a menor
results_sorted = sorted(results, key=lambda x: x['score'], reverse=True)
# Tomar el primer elemento (el de mayor confianza)
top_sentiment = results_sorted[0]
label = top_sentiment['label']
score = top_sentiment['score']
# Crear un diccionario de puntuaciones de confianza para la salida de la etiqueta
confidence_scores_output = {item['label']: item['score'] for item in results}
# Generar el HTML para mostrar el sentimiento general
overall_sentiment_display = interpret_sentiment(label, score)
return {
"Overall Sentiment": overall_sentiment_display,
"Confidence Scores": confidence_scores_output,
"Raw Output": str(results)
}
except Exception as e:
# En caso de cualquier error durante el análisis
return {
"Overall Sentiment": f"<div class='sentiment-display'>❌ Error ❌</div><p>An error occurred during analysis: {e}</p>",
"Confidence Scores": {},
"Raw Output": f"Error: {e}"
}
# --- Gradio Interface ---
# Al establecer theme=None, Gradio no aplicará ningún tema predefinido.
# Todo el estilo visual vendrá de nuestro `custom_css`.
with gr.Blocks(css=custom_css, theme=None) as demo:
gr.Markdown("<h1 style='color: #80cbc4; text-align: center;'>🌌 Sentiment Analyzer 🌌</h1>")
gr.Markdown("<p style='color: #f8f8f2; text-align: center;'>Uncover the emotional tone of your English text instantly.</p>")
with gr.Column(elem_classes="gradio-container"):
text_input = gr.Textbox(
lines=7,
placeholder="Type your English text here...",
label="Your Text",
interactive=True,
value="This movie was absolutely brilliant! A masterpiece of storytelling and emotion."
)
analyze_btn = gr.Button("Analyze Sentiment", variant="primary")
gr.Markdown("<hr style='border-top: 1px solid #424242;'>")
gr.Markdown("<h3 style='color: #80cbc4; text-align: center;'>Try some examples:</h3>")
# IMPORTANTE: Desactivamos cache_examples para evitar el FileNotFoundError
examples = gr.Examples(
examples=[
["This product exceeded my expectations, truly amazing!"],
["I found the customer service to be quite disappointing and slow."],
["The weather forecast predicts light rain for tomorrow morning."],
["What a fantastic experience! Highly recommend it."],
["I'm so frustrated with this slow internet connection."],
["The meeting concluded without any major decisions."]
],
inputs=text_input,
fn=analyze_sentiment,
outputs=[gr.HTML(label="Overall Sentiment"), gr.Label(num_top_classes=3, label="Confidence Scores"), gr.JSON(label="Raw Model Output", visible=False)],
cache_examples=False # <--- ESTE ES EL CAMBIO CLAVE PARA ELIMINAR EL FileNotFoundError
)
gr.Markdown("<hr style='border-top: 1px solid #424242;'>")
gr.Markdown("<h2 style='color: #80cbc4;'>📊 Analysis Results</h2>")
overall_sentiment_output = gr.HTML(label="Overall Sentiment")
confidence_scores_output = gr.Label(num_top_classes=3, label="Confidence Scores")
raw_output = gr.JSON(label="Raw Model Output", visible=False)
# --- Event Listeners ---
analyze_btn.click(
fn=analyze_sentiment,
inputs=text_input,
outputs=[overall_sentiment_output, confidence_scores_output, raw_output]
)
text_input.change(
fn=analyze_sentiment,
inputs=text_input,
outputs=[overall_sentiment_output, confidence_scores_output, raw_output],
# live=True # Puedes descomentar si quieres actualizaciones en vivo (consume más recursos)
)
# Launch the Gradio application
demo.launch() |