Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# ID de tu modelo de an谩lisis de sentimientos que ya subiste
|
5 |
+
MODEL_ID = "Light-Dav/sentiment-analysis-bert-model"
|
6 |
+
|
7 |
+
# Cargar el pipeline del modelo
|
8 |
+
try:
|
9 |
+
classifier = pipeline("sentiment-analysis", model=MODEL_ID)
|
10 |
+
except Exception as e:
|
11 |
+
print(f"Error al cargar el modelo {MODEL_ID}: {e}")
|
12 |
+
classifier = None # Para evitar errores si classifier no se inicializa
|
13 |
+
|
14 |
+
def analyze_sentiment(text):
|
15 |
+
if not text:
|
16 |
+
return {"Positive": 0.0, "Negative": 0.0, "Neutral": 0.0}
|
17 |
+
|
18 |
+
if classifier is None:
|
19 |
+
return {"Error": "Modelo no cargado. Contactar al administrador."}
|
20 |
+
|
21 |
+
# Realizar la inferencia
|
22 |
+
# pipeline devuelve una lista de diccionarios, tomamos el primero
|
23 |
+
results = classifier(text)[0]
|
24 |
+
|
25 |
+
# Formatear el resultado para Gradio (diccionario de etiqueta a score)
|
26 |
+
formatted_results = {}
|
27 |
+
for item in results:
|
28 |
+
formatted_results[item['label']] = item['score']
|
29 |
+
|
30 |
+
return formatted_results
|
31 |
+
|
32 |
+
# Crear la interfaz de Gradio
|
33 |
+
iface = gr.Interface(
|
34 |
+
fn=analyze_sentiment,
|
35 |
+
inputs=gr.Textbox(lines=3, placeholder="Escribe tu texto aqu铆..."),
|
36 |
+
outputs=gr.Label(num_top_classes=3), # Mostrar las 3 clases principales (Positivo, Negativo, Neutro)
|
37 |
+
title="馃 An谩lisis de Sentimientos en Espa帽ol",
|
38 |
+
description="Introduce un texto en espa帽ol y el modelo predecir谩 su sentimiento (Positivo, Negativo, Neutro).",
|
39 |
+
examples=[
|
40 |
+
["Me encant贸 este libro, es fascinante y lo recomiendo totalmente."],
|
41 |
+
["El servicio fue terrible, muy lento y poco amable."],
|
42 |
+
["La reuni贸n se program贸 para el jueves a las 10 AM."]
|
43 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
)
|
45 |
|
46 |
+
# Iniciar la aplicaci贸n Gradio (esto se hace autom谩ticamente en Hugging Face Spaces)
|
47 |
+
iface.launch(share=False)
|
|