Light-Dav commited on
Commit
3dc2123
verified
1 Parent(s): aa33604

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -61
app.py CHANGED
@@ -1,64 +1,47 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # ID de tu modelo de an谩lisis de sentimientos que ya subiste
5
+ MODEL_ID = "Light-Dav/sentiment-analysis-bert-model"
6
+
7
+ # Cargar el pipeline del modelo
8
+ try:
9
+ classifier = pipeline("sentiment-analysis", model=MODEL_ID)
10
+ except Exception as e:
11
+ print(f"Error al cargar el modelo {MODEL_ID}: {e}")
12
+ classifier = None # Para evitar errores si classifier no se inicializa
13
+
14
+ def analyze_sentiment(text):
15
+ if not text:
16
+ return {"Positive": 0.0, "Negative": 0.0, "Neutral": 0.0}
17
+
18
+ if classifier is None:
19
+ return {"Error": "Modelo no cargado. Contactar al administrador."}
20
+
21
+ # Realizar la inferencia
22
+ # pipeline devuelve una lista de diccionarios, tomamos el primero
23
+ results = classifier(text)[0]
24
+
25
+ # Formatear el resultado para Gradio (diccionario de etiqueta a score)
26
+ formatted_results = {}
27
+ for item in results:
28
+ formatted_results[item['label']] = item['score']
29
+
30
+ return formatted_results
31
+
32
+ # Crear la interfaz de Gradio
33
+ iface = gr.Interface(
34
+ fn=analyze_sentiment,
35
+ inputs=gr.Textbox(lines=3, placeholder="Escribe tu texto aqu铆..."),
36
+ outputs=gr.Label(num_top_classes=3), # Mostrar las 3 clases principales (Positivo, Negativo, Neutro)
37
+ title="馃 An谩lisis de Sentimientos en Espa帽ol",
38
+ description="Introduce un texto en espa帽ol y el modelo predecir谩 su sentimiento (Positivo, Negativo, Neutro).",
39
+ examples=[
40
+ ["Me encant贸 este libro, es fascinante y lo recomiendo totalmente."],
41
+ ["El servicio fue terrible, muy lento y poco amable."],
42
+ ["La reuni贸n se program贸 para el jueves a las 10 AM."]
43
+ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  )
45
 
46
+ # Iniciar la aplicaci贸n Gradio (esto se hace autom谩ticamente en Hugging Face Spaces)
47
+ iface.launch(share=False)