Learto's picture
Update app.py
de98e3d
import requests
import urllib.parse
import gradio as gr
API_URL = "https://api-inference.huggingface.co/models/ProsusAI/finbert"
headers = {"Authorization": "Bearer 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"}
# def query(payload):
# response = requests.post(API_URL, headers=headers, json=payload)
# sentiment_prediction = response.json()
# pos, neg, neutr = sentiment_prediction[:, 0].item(), sentiment_prediction[:, 1].item(), sentiment_prediction[:, 2].item()
# sentiment_label = "Positive" if pos > neg and pos > neutr else "Negative" if neg > pos and neg > neutr else "Neutral"
# return sentiment_label
# output = query({
# "inputs": "I like you. I love you",
# })
def predict_sentiment(payload):
# Sentiment Analysis
response = requests.post(API_URL, headers=headers, json=payload)
sentiment_prediction = response.json()
# with torch.no_grad():
# sentiment_outputs = requests.post(API_URL, headers=headers, json=payload)
# sentiment_prediction = torch.nn.functional.softmax(sentiment_outputs.logits, dim=-1)
for sentiment_prediction in response_json:
if sentiment_prediction['label'] == 'positive':
pos = sentiment_prediction['score']
elif sentiment_prediction['label'] == 'neutral':
neutr = sentiment_prediction['score']
elif sentiment_prediction['label'] == 'negative':
neg = sentiment_prediction['score']
# pos, neg, neutr = sentiment_prediction[:, 0].item(), sentiment_prediction[:, 1].item(), sentiment_prediction[:, 2].item()
sentiment_label = "Positive" if pos > neg and pos > neutr else "Negative" if neg > pos and neg > neutr else "Neutral"
return sentiment_label
# Gradio Interface
iface = gr.Interface(
fn=predict_sentiment,
inputs=[gr.Textbox(lines=2, label="Financial Statement")],
outputs=[
gr.Textbox(label="Sentiment"),
],
live=True,
title="Financial Content Sentiment Analysis",
description="Enter a financial statement to analyze its sentiment."
)
iface.launch()