import requests import urllib.parse import gradio as gr API_URL = "https://api-inference.huggingface.co/models/ProsusAI/finbert" headers = {"Authorization": "Bearer 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"} # def query(payload): # response = requests.post(API_URL, headers=headers, json=payload) # sentiment_prediction = response.json() # pos, neg, neutr = sentiment_prediction[:, 0].item(), sentiment_prediction[:, 1].item(), sentiment_prediction[:, 2].item() # sentiment_label = "Positive" if pos > neg and pos > neutr else "Negative" if neg > pos and neg > neutr else "Neutral" # return sentiment_label # output = query({ # "inputs": "I like you. I love you", # }) def predict_sentiment(payload): # Sentiment Analysis response = requests.post(API_URL, headers=headers, json=payload) sentiment_prediction = response.json() # with torch.no_grad(): # sentiment_outputs = requests.post(API_URL, headers=headers, json=payload) # sentiment_prediction = torch.nn.functional.softmax(sentiment_outputs.logits, dim=-1) for sentiment_prediction in response_json: if sentiment_prediction['label'] == 'positive': pos = sentiment_prediction['score'] elif sentiment_prediction['label'] == 'neutral': neutr = sentiment_prediction['score'] elif sentiment_prediction['label'] == 'negative': neg = sentiment_prediction['score'] # pos, neg, neutr = sentiment_prediction[:, 0].item(), sentiment_prediction[:, 1].item(), sentiment_prediction[:, 2].item() sentiment_label = "Positive" if pos > neg and pos > neutr else "Negative" if neg > pos and neg > neutr else "Neutral" return sentiment_label # Gradio Interface iface = gr.Interface( fn=predict_sentiment, inputs=[gr.Textbox(lines=2, label="Financial Statement")], outputs=[ gr.Textbox(label="Sentiment"), ], live=True, title="Financial Content Sentiment Analysis", description="Enter a financial statement to analyze its sentiment." ) iface.launch()