Update app.py
Browse files
app.py
CHANGED
@@ -1,120 +1,200 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
-
from fastapi.responses import StreamingResponse
|
3 |
from pydantic import BaseModel
|
4 |
-
from transformers import pipeline
|
5 |
import asyncio
|
6 |
import queue
|
7 |
import threading
|
8 |
import time
|
|
|
9 |
import httpx
|
10 |
-
import json
|
11 |
|
12 |
class ModelInput(BaseModel):
|
13 |
prompt: str
|
14 |
-
max_new_tokens: int =
|
15 |
|
16 |
app = FastAPI()
|
17 |
|
18 |
-
#
|
19 |
generator = pipeline(
|
20 |
"text-generation",
|
21 |
model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
22 |
device="cpu"
|
23 |
)
|
24 |
|
25 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
knowledge_graph = {}
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
async def update_knowledge_graph_periodically():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
while True:
|
|
|
|
|
31 |
try:
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
data = resp.json()
|
44 |
-
|
45 |
-
# Extract some useful info (abstract text)
|
46 |
-
abstract = data.get("AbstractText", "")
|
47 |
-
related_topics = data.get("RelatedTopics", [])
|
48 |
-
|
49 |
-
# Save/update knowledge graph (super basic example)
|
50 |
knowledge_graph[query] = {
|
51 |
-
"
|
52 |
-
"
|
53 |
"timestamp": time.time()
|
54 |
}
|
55 |
-
|
56 |
-
print(f"Knowledge graph updated for query: {query}")
|
57 |
|
58 |
except Exception as e:
|
59 |
-
print(f"
|
60 |
|
61 |
-
await asyncio.sleep(60)
|
62 |
|
63 |
-
# Kick off background task on startup
|
64 |
@app.on_event("startup")
|
65 |
async def startup_event():
|
66 |
asyncio.create_task(update_knowledge_graph_periodically())
|
67 |
|
68 |
-
#
|
69 |
@app.post("/generate/stream")
|
70 |
async def generate_stream(input: ModelInput):
|
71 |
-
prompt = input.prompt
|
72 |
-
max_new_tokens = input.max_new_tokens
|
73 |
-
|
74 |
q = queue.Queue()
|
75 |
-
|
76 |
def run_generation():
|
77 |
try:
|
|
|
78 |
streamer = TextStreamer(generator.tokenizer, skip_prompt=True)
|
79 |
-
|
80 |
-
# Monkey-patch streamer to push tokens to queue
|
81 |
-
def queue_token(token):
|
82 |
q.put(token)
|
83 |
-
|
84 |
-
streamer.put = queue_token
|
85 |
-
|
86 |
-
# Run generation with streamer attached
|
87 |
generator(
|
88 |
-
prompt,
|
89 |
-
max_new_tokens=max_new_tokens,
|
90 |
do_sample=False,
|
91 |
streamer=streamer
|
92 |
)
|
93 |
except Exception as e:
|
94 |
q.put(f"[ERROR] {e}")
|
95 |
finally:
|
96 |
-
q.put(None)
|
97 |
-
|
98 |
thread = threading.Thread(target=run_generation)
|
99 |
thread.start()
|
100 |
|
101 |
async def event_generator():
|
|
|
102 |
while True:
|
103 |
-
token = q.get
|
104 |
if token is None:
|
105 |
break
|
106 |
yield token
|
107 |
-
|
108 |
return StreamingResponse(event_generator(), media_type="text/plain")
|
109 |
|
110 |
-
|
111 |
-
# Optional: Endpoint to query knowledge graph
|
112 |
@app.get("/knowledge")
|
113 |
async def get_knowledge():
|
114 |
return knowledge_graph
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
@app.get("/")
|
119 |
async def root():
|
120 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from fastapi.responses import StreamingResponse, HTMLResponse
|
3 |
from pydantic import BaseModel
|
4 |
+
from transformers import pipeline
|
5 |
import asyncio
|
6 |
import queue
|
7 |
import threading
|
8 |
import time
|
9 |
+
import random
|
10 |
import httpx
|
|
|
11 |
|
12 |
class ModelInput(BaseModel):
|
13 |
prompt: str
|
14 |
+
max_new_tokens: int = 64000
|
15 |
|
16 |
app = FastAPI()
|
17 |
|
18 |
+
# Your main generation model (DeepSeek)
|
19 |
generator = pipeline(
|
20 |
"text-generation",
|
21 |
model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
22 |
device="cpu"
|
23 |
)
|
24 |
|
25 |
+
# The summarization instruct model
|
26 |
+
summarizer = pipeline(
|
27 |
+
"text-generation",
|
28 |
+
model="HuggingFaceTB/SmolLM2-360M-Instruct",
|
29 |
+
device="cpu",
|
30 |
+
max_length=512, # keep summary short
|
31 |
+
do_sample=False
|
32 |
+
)
|
33 |
+
|
34 |
knowledge_graph = {}
|
35 |
|
36 |
+
async def fetch_ddg_search(query: str):
|
37 |
+
url = "https://api.duckduckgo.com/"
|
38 |
+
params = {
|
39 |
+
"q": query,
|
40 |
+
"format": "json",
|
41 |
+
"no_redirect": "1",
|
42 |
+
"no_html": "1",
|
43 |
+
"skip_disambig": "1"
|
44 |
+
}
|
45 |
+
async with httpx.AsyncClient() as client:
|
46 |
+
resp = await client.get(url, params=params, timeout=15)
|
47 |
+
data = resp.json()
|
48 |
+
return data
|
49 |
+
|
50 |
+
def clean_ddg_text(ddg_json):
|
51 |
+
# Take abstract text + top related topic texts concatenated
|
52 |
+
abstract = ddg_json.get("AbstractText", "")
|
53 |
+
related = ddg_json.get("RelatedTopics", [])
|
54 |
+
related_texts = []
|
55 |
+
for item in related:
|
56 |
+
if "Text" in item:
|
57 |
+
related_texts.append(item["Text"])
|
58 |
+
elif "Name" in item and "Topics" in item:
|
59 |
+
for sub in item["Topics"]:
|
60 |
+
if "Text" in sub:
|
61 |
+
related_texts.append(sub["Text"])
|
62 |
+
combined_text = abstract + " " + " ".join(related_texts)
|
63 |
+
# Simple clean up, trim length to avoid overloading
|
64 |
+
combined_text = combined_text.strip().replace("\n", " ")
|
65 |
+
if len(combined_text) > 1000:
|
66 |
+
combined_text = combined_text[:1000] + "..."
|
67 |
+
return combined_text
|
68 |
+
|
69 |
+
def summarize_text(text: str):
|
70 |
+
# Run the instruct model to summarize/clean the text
|
71 |
+
prompt = f"Summarize this information concisely:\n{text}\nSummary:"
|
72 |
+
output = summarizer(prompt, max_length=256, do_sample=False)
|
73 |
+
return output[0]["generated_text"].strip()
|
74 |
+
|
75 |
async def update_knowledge_graph_periodically():
|
76 |
+
queries = [
|
77 |
+
"latest tech startup news",
|
78 |
+
"AI breakthroughs 2025",
|
79 |
+
"funding trends in tech startups",
|
80 |
+
"popular programming languages 2025",
|
81 |
+
"open source AI models"
|
82 |
+
]
|
83 |
while True:
|
84 |
+
query = random.choice(queries)
|
85 |
+
print(f"[KG Updater] Searching DuckDuckGo for query: {query}")
|
86 |
try:
|
87 |
+
ddg_data = await fetch_ddg_search(query)
|
88 |
+
cleaned = clean_ddg_text(ddg_data)
|
89 |
+
if not cleaned:
|
90 |
+
cleaned = "No useful info found."
|
91 |
+
print(f"[KG Updater] DuckDuckGo cleaned text length: {len(cleaned)}")
|
92 |
+
|
93 |
+
# Summarize using your instruct model in a thread (blocking)
|
94 |
+
loop = asyncio.get_event_loop()
|
95 |
+
summary = await loop.run_in_executor(None, summarize_text, cleaned)
|
96 |
+
print(f"[KG Updater] Summary length: {len(summary)}")
|
97 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
knowledge_graph[query] = {
|
99 |
+
"raw_text": cleaned,
|
100 |
+
"summary": summary,
|
101 |
"timestamp": time.time()
|
102 |
}
|
103 |
+
print(f"[KG Updater] Knowledge graph updated for query: {query}")
|
|
|
104 |
|
105 |
except Exception as e:
|
106 |
+
print(f"[KG Updater] Error: {e}")
|
107 |
|
108 |
+
await asyncio.sleep(60)
|
109 |
|
|
|
110 |
@app.on_event("startup")
|
111 |
async def startup_event():
|
112 |
asyncio.create_task(update_knowledge_graph_periodically())
|
113 |
|
114 |
+
# Manual streaming endpoint (kept as-is)
|
115 |
@app.post("/generate/stream")
|
116 |
async def generate_stream(input: ModelInput):
|
|
|
|
|
|
|
117 |
q = queue.Queue()
|
|
|
118 |
def run_generation():
|
119 |
try:
|
120 |
+
streamer = pipeline("text-generation", model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", device="cpu").tokenizer
|
121 |
streamer = TextStreamer(generator.tokenizer, skip_prompt=True)
|
122 |
+
def enqueue_token(token):
|
|
|
|
|
123 |
q.put(token)
|
124 |
+
streamer.put = enqueue_token
|
|
|
|
|
|
|
125 |
generator(
|
126 |
+
input.prompt,
|
127 |
+
max_new_tokens=input.max_new_tokens,
|
128 |
do_sample=False,
|
129 |
streamer=streamer
|
130 |
)
|
131 |
except Exception as e:
|
132 |
q.put(f"[ERROR] {e}")
|
133 |
finally:
|
134 |
+
q.put(None)
|
|
|
135 |
thread = threading.Thread(target=run_generation)
|
136 |
thread.start()
|
137 |
|
138 |
async def event_generator():
|
139 |
+
loop = asyncio.get_event_loop()
|
140 |
while True:
|
141 |
+
token = await loop.run_in_executor(None, q.get)
|
142 |
if token is None:
|
143 |
break
|
144 |
yield token
|
|
|
145 |
return StreamingResponse(event_generator(), media_type="text/plain")
|
146 |
|
147 |
+
# Endpoint to get KG
|
|
|
148 |
@app.get("/knowledge")
|
149 |
async def get_knowledge():
|
150 |
return knowledge_graph
|
151 |
|
152 |
+
# Basic client page to test streaming
|
153 |
+
@app.get("/", response_class=HTMLResponse)
|
|
|
154 |
async def root():
|
155 |
+
return """
|
156 |
+
<!DOCTYPE html>
|
157 |
+
<html>
|
158 |
+
<head><title>Streaming Text Generation Client</title></head>
|
159 |
+
<body>
|
160 |
+
<h2>Streaming Text Generation Demo</h2>
|
161 |
+
<textarea id="prompt" rows="4" cols="60">Write me a poem about tech startup struggles</textarea><br/>
|
162 |
+
<button onclick="startStreaming()">Generate</button>
|
163 |
+
<pre id="output" style="white-space: pre-wrap; background:#eee; padding:10px; border-radius:5px; max-height:400px; overflow:auto;"></pre>
|
164 |
+
<h3>Knowledge Graph</h3>
|
165 |
+
<pre id="kg" style="background:#ddd; padding:10px; max-height:300px; overflow:auto;"></pre>
|
166 |
+
|
167 |
+
<script>
|
168 |
+
async function startStreaming() {
|
169 |
+
const prompt = document.getElementById("prompt").value;
|
170 |
+
const output = document.getElementById("output");
|
171 |
+
output.textContent = "";
|
172 |
+
const response = await fetch("/generate/stream", {
|
173 |
+
method: "POST",
|
174 |
+
headers: { "Content-Type": "application/json" },
|
175 |
+
body: JSON.stringify({ prompt: prompt, max_new_tokens: 64000 })
|
176 |
+
});
|
177 |
+
const reader = response.body.getReader();
|
178 |
+
const decoder = new TextDecoder();
|
179 |
+
while(true) {
|
180 |
+
const {done, value} = await reader.read();
|
181 |
+
if(done) break;
|
182 |
+
const chunk = decoder.decode(value, {stream: true});
|
183 |
+
output.textContent += chunk;
|
184 |
+
output.scrollTop = output.scrollHeight;
|
185 |
+
}
|
186 |
+
}
|
187 |
+
|
188 |
+
async function fetchKG() {
|
189 |
+
const kgPre = document.getElementById("kg");
|
190 |
+
const res = await fetch("/knowledge");
|
191 |
+
const data = await res.json();
|
192 |
+
kgPre.textContent = JSON.stringify(data, null, 2);
|
193 |
+
}
|
194 |
+
|
195 |
+
setInterval(fetchKG, 10000); // update KG display every 10s
|
196 |
+
window.onload = fetchKG;
|
197 |
+
</script>
|
198 |
+
</body>
|
199 |
+
</html>
|
200 |
+
"""
|