File size: 6,775 Bytes
1ea4540
 
6e0397b
1ea4540
2145ed0
 
 
 
1ea4540
2145ed0
6e0397b
 
 
1ea4540
6e0397b
 
 
1ea4540
3003014
 
5879220
2145ed0
3003014
6e0397b
1ea4540
 
 
 
 
 
 
 
 
2145ed0
6e0397b
1ea4540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145ed0
1ea4540
 
 
 
 
 
 
2145ed0
1ea4540
 
2145ed0
1ea4540
 
 
 
 
 
 
 
 
 
 
2145ed0
1ea4540
 
2145ed0
 
1ea4540
2145ed0
 
1ea4540
2145ed0
1ea4540
2145ed0
 
 
 
 
1ea4540
2145ed0
 
 
 
 
1ea4540
2145ed0
1ea4540
2145ed0
1ea4540
2145ed0
1ea4540
 
2145ed0
 
 
 
 
 
1ea4540
2145ed0
 
 
 
1ea4540
2145ed0
1ea4540
2145ed0
 
 
 
 
1ea4540
2145ed0
 
 
 
1ea4540
 
6e0397b
1ea4540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from fastapi import FastAPI
from fastapi.responses import StreamingResponse, HTMLResponse
from pydantic import BaseModel
from transformers import pipeline
import asyncio
import queue
import threading
import time
import random
import httpx

class ModelInput(BaseModel):
    prompt: str
    max_new_tokens: int = 64000

app = FastAPI()

# Your main generation model (DeepSeek)
generator = pipeline(
    "text-generation",
    model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
    device="cpu"
)

# The summarization instruct model
summarizer = pipeline(
    "text-generation",
    model="HuggingFaceTB/SmolLM2-360M-Instruct",
    device="cpu",
    max_length=512,  # keep summary short
    do_sample=False
)

knowledge_graph = {}

async def fetch_ddg_search(query: str):
    url = "https://api.duckduckgo.com/"
    params = {
        "q": query,
        "format": "json",
        "no_redirect": "1",
        "no_html": "1",
        "skip_disambig": "1"
    }
    async with httpx.AsyncClient() as client:
        resp = await client.get(url, params=params, timeout=15)
        data = resp.json()
    return data

def clean_ddg_text(ddg_json):
    # Take abstract text + top related topic texts concatenated
    abstract = ddg_json.get("AbstractText", "")
    related = ddg_json.get("RelatedTopics", [])
    related_texts = []
    for item in related:
        if "Text" in item:
            related_texts.append(item["Text"])
        elif "Name" in item and "Topics" in item:
            for sub in item["Topics"]:
                if "Text" in sub:
                    related_texts.append(sub["Text"])
    combined_text = abstract + " " + " ".join(related_texts)
    # Simple clean up, trim length to avoid overloading
    combined_text = combined_text.strip().replace("\n", " ")
    if len(combined_text) > 1000:
        combined_text = combined_text[:1000] + "..."
    return combined_text

def summarize_text(text: str):
    # Run the instruct model to summarize/clean the text
    prompt = f"Summarize this information concisely:\n{text}\nSummary:"
    output = summarizer(prompt, max_length=256, do_sample=False)
    return output[0]["generated_text"].strip()

async def update_knowledge_graph_periodically():
    queries = [
        "latest tech startup news",
        "AI breakthroughs 2025",
        "funding trends in tech startups",
        "popular programming languages 2025",
        "open source AI models"
    ]
    while True:
        query = random.choice(queries)
        print(f"[KG Updater] Searching DuckDuckGo for query: {query}")
        try:
            ddg_data = await fetch_ddg_search(query)
            cleaned = clean_ddg_text(ddg_data)
            if not cleaned:
                cleaned = "No useful info found."
            print(f"[KG Updater] DuckDuckGo cleaned text length: {len(cleaned)}")

            # Summarize using your instruct model in a thread (blocking)
            loop = asyncio.get_event_loop()
            summary = await loop.run_in_executor(None, summarize_text, cleaned)
            print(f"[KG Updater] Summary length: {len(summary)}")

            knowledge_graph[query] = {
                "raw_text": cleaned,
                "summary": summary,
                "timestamp": time.time()
            }
            print(f"[KG Updater] Knowledge graph updated for query: {query}")

        except Exception as e:
            print(f"[KG Updater] Error: {e}")

        await asyncio.sleep(60)

@app.on_event("startup")
async def startup_event():
    asyncio.create_task(update_knowledge_graph_periodically())

# Manual streaming endpoint (kept as-is)
@app.post("/generate/stream")
async def generate_stream(input: ModelInput):
    q = queue.Queue()
    def run_generation():
        try:
            streamer = pipeline("text-generation", model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", device="cpu").tokenizer
            streamer = TextStreamer(generator.tokenizer, skip_prompt=True)
            def enqueue_token(token):
                q.put(token)
            streamer.put = enqueue_token
            generator(
                input.prompt,
                max_new_tokens=input.max_new_tokens,
                do_sample=False,
                streamer=streamer
            )
        except Exception as e:
            q.put(f"[ERROR] {e}")
        finally:
            q.put(None)
    thread = threading.Thread(target=run_generation)
    thread.start()

    async def event_generator():
        loop = asyncio.get_event_loop()
        while True:
            token = await loop.run_in_executor(None, q.get)
            if token is None:
                break
            yield token
    return StreamingResponse(event_generator(), media_type="text/plain")

# Endpoint to get KG
@app.get("/knowledge")
async def get_knowledge():
    return knowledge_graph

# Basic client page to test streaming
@app.get("/", response_class=HTMLResponse)
async def root():
    return """
    <!DOCTYPE html>
    <html>
    <head><title>Streaming Text Generation Client</title></head>
    <body>
      <h2>Streaming Text Generation Demo</h2>
      <textarea id="prompt" rows="4" cols="60">Write me a poem about tech startup struggles</textarea><br/>
      <button onclick="startStreaming()">Generate</button>
      <pre id="output" style="white-space: pre-wrap; background:#eee; padding:10px; border-radius:5px; max-height:400px; overflow:auto;"></pre>
      <h3>Knowledge Graph</h3>
      <pre id="kg" style="background:#ddd; padding:10px; max-height:300px; overflow:auto;"></pre>

      <script>
      async function startStreaming() {
          const prompt = document.getElementById("prompt").value;
          const output = document.getElementById("output");
          output.textContent = "";
          const response = await fetch("/generate/stream", {
              method: "POST",
              headers: { "Content-Type": "application/json" },
              body: JSON.stringify({ prompt: prompt, max_new_tokens: 64000 })
          });
          const reader = response.body.getReader();
          const decoder = new TextDecoder();
          while(true) {
              const {done, value} = await reader.read();
              if(done) break;
              const chunk = decoder.decode(value, {stream: true});
              output.textContent += chunk;
              output.scrollTop = output.scrollHeight;
          }
      }

      async function fetchKG() {
          const kgPre = document.getElementById("kg");
          const res = await fetch("/knowledge");
          const data = await res.json();
          kgPre.textContent = JSON.stringify(data, null, 2);
      }

      setInterval(fetchKG, 10000);  // update KG display every 10s
      window.onload = fetchKG;
      </script>
    </body>
    </html>
    """