Spaces:
Running
on
Zero
Running
on
Zero
Create app_v2v.py
Browse files- app_v2v.py +683 -0
app_v2v.py
ADDED
@@ -0,0 +1,683 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers_helper.hf_login import login
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
import traceback
|
10 |
+
import einops
|
11 |
+
import safetensors.torch as sf
|
12 |
+
import numpy as np
|
13 |
+
import argparse
|
14 |
+
import math
|
15 |
+
# 20250506 pftq: Added for video input loading
|
16 |
+
import decord
|
17 |
+
# 20250506 pftq: Added for progress bars in video_encode
|
18 |
+
from tqdm import tqdm
|
19 |
+
# 20250506 pftq: Normalize file paths for Windows compatibility
|
20 |
+
import pathlib
|
21 |
+
# 20250506 pftq: for easier to read timestamp
|
22 |
+
from datetime import datetime
|
23 |
+
# 20250508 pftq: for saving prompt to mp4 comments metadata
|
24 |
+
import imageio_ffmpeg
|
25 |
+
import tempfile
|
26 |
+
import shutil
|
27 |
+
import subprocess
|
28 |
+
|
29 |
+
from PIL import Image
|
30 |
+
from diffusers import AutoencoderKLHunyuanVideo
|
31 |
+
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
|
32 |
+
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
|
33 |
+
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
|
34 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
35 |
+
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
36 |
+
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
|
37 |
+
from diffusers_helper.thread_utils import AsyncStream, async_run
|
38 |
+
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
39 |
+
from transformers import SiglipImageProcessor, SiglipVisionModel
|
40 |
+
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
41 |
+
from diffusers_helper.bucket_tools import find_nearest_bucket
|
42 |
+
|
43 |
+
parser = argparse.ArgumentParser()
|
44 |
+
parser.add_argument('--share', action='store_true')
|
45 |
+
parser.add_argument("--server", type=str, default='0.0.0.0')
|
46 |
+
parser.add_argument("--port", type=int, required=False)
|
47 |
+
parser.add_argument("--inbrowser", action='store_true')
|
48 |
+
args = parser.parse_args()
|
49 |
+
|
50 |
+
print(args)
|
51 |
+
|
52 |
+
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
53 |
+
high_vram = free_mem_gb > 60
|
54 |
+
|
55 |
+
print(f'Free VRAM {free_mem_gb} GB')
|
56 |
+
print(f'High-VRAM Mode: {high_vram}')
|
57 |
+
|
58 |
+
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
|
59 |
+
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
|
60 |
+
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
|
61 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
|
62 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
|
63 |
+
|
64 |
+
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
|
65 |
+
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
|
66 |
+
|
67 |
+
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
|
68 |
+
|
69 |
+
vae.eval()
|
70 |
+
text_encoder.eval()
|
71 |
+
text_encoder_2.eval()
|
72 |
+
image_encoder.eval()
|
73 |
+
transformer.eval()
|
74 |
+
|
75 |
+
if not high_vram:
|
76 |
+
vae.enable_slicing()
|
77 |
+
vae.enable_tiling()
|
78 |
+
|
79 |
+
transformer.high_quality_fp32_output_for_inference = True
|
80 |
+
print('transformer.high_quality_fp32_output_for_inference = True')
|
81 |
+
|
82 |
+
transformer.to(dtype=torch.bfloat16)
|
83 |
+
vae.to(dtype=torch.float16)
|
84 |
+
image_encoder.to(dtype=torch.float16)
|
85 |
+
text_encoder.to(dtype=torch.float16)
|
86 |
+
text_encoder_2.to(dtype=torch.float16)
|
87 |
+
|
88 |
+
vae.requires_grad_(False)
|
89 |
+
text_encoder.requires_grad_(False)
|
90 |
+
text_encoder_2.requires_grad_(False)
|
91 |
+
image_encoder.requires_grad_(False)
|
92 |
+
transformer.requires_grad_(False)
|
93 |
+
|
94 |
+
if not high_vram:
|
95 |
+
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
|
96 |
+
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
97 |
+
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
98 |
+
else:
|
99 |
+
text_encoder.to(gpu)
|
100 |
+
text_encoder_2.to(gpu)
|
101 |
+
image_encoder.to(gpu)
|
102 |
+
vae.to(gpu)
|
103 |
+
transformer.to(gpu)
|
104 |
+
|
105 |
+
stream = AsyncStream()
|
106 |
+
|
107 |
+
outputs_folder = './outputs/'
|
108 |
+
os.makedirs(outputs_folder, exist_ok=True)
|
109 |
+
|
110 |
+
# 20250506 pftq: Added function to encode input video frames into latents
|
111 |
+
@torch.no_grad()
|
112 |
+
def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=16, device="cuda", width=None, height=None):
|
113 |
+
"""
|
114 |
+
Encode a video into latent representations using the VAE.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
video_path: Path to the input video file.
|
118 |
+
vae: AutoencoderKLHunyuanVideo model.
|
119 |
+
height, width: Target resolution for resizing frames.
|
120 |
+
vae_batch_size: Number of frames to process per batch.
|
121 |
+
device: Device for computation (e.g., "cuda").
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
start_latent: Latent of the first frame (for compatibility with original code).
|
125 |
+
input_image_np: First frame as numpy array (for CLIP vision encoding).
|
126 |
+
history_latents: Latents of all frames (shape: [1, channels, frames, height//8, width//8]).
|
127 |
+
fps: Frames per second of the input video.
|
128 |
+
"""
|
129 |
+
# 20250506 pftq: Normalize video path for Windows compatibility
|
130 |
+
video_path = str(pathlib.Path(video_path).resolve())
|
131 |
+
print(f"Processing video: {video_path}")
|
132 |
+
|
133 |
+
# 20250506 pftq: Check CUDA availability and fallback to CPU if needed
|
134 |
+
if device == "cuda" and not torch.cuda.is_available():
|
135 |
+
print("CUDA is not available, falling back to CPU")
|
136 |
+
device = "cpu"
|
137 |
+
|
138 |
+
try:
|
139 |
+
# 20250506 pftq: Load video and get FPS
|
140 |
+
print("Initializing VideoReader...")
|
141 |
+
vr = decord.VideoReader(video_path)
|
142 |
+
fps = vr.get_avg_fps() # Get input video FPS
|
143 |
+
num_real_frames = len(vr)
|
144 |
+
print(f"Video loaded: {num_real_frames} frames, FPS: {fps}")
|
145 |
+
|
146 |
+
# Truncate to nearest latent size (multiple of 4)
|
147 |
+
latent_size_factor = 4
|
148 |
+
num_frames = (num_real_frames // latent_size_factor) * latent_size_factor
|
149 |
+
if num_frames != num_real_frames:
|
150 |
+
print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility")
|
151 |
+
num_real_frames = num_frames
|
152 |
+
|
153 |
+
# 20250506 pftq: Read frames
|
154 |
+
print("Reading video frames...")
|
155 |
+
frames = vr.get_batch(range(num_real_frames)).asnumpy() # Shape: (num_real_frames, height, width, channels)
|
156 |
+
print(f"Frames read: {frames.shape}")
|
157 |
+
|
158 |
+
# 20250506 pftq: Get native video resolution
|
159 |
+
native_height, native_width = frames.shape[1], frames.shape[2]
|
160 |
+
print(f"Native video resolution: {native_width}x{native_height}")
|
161 |
+
|
162 |
+
# 20250506 pftq: Use native resolution if height/width not specified, otherwise use provided values
|
163 |
+
target_height = native_height if height is None else height
|
164 |
+
target_width = native_width if width is None else width
|
165 |
+
|
166 |
+
# 20250506 pftq: Adjust to nearest bucket for model compatibility
|
167 |
+
if not no_resize:
|
168 |
+
target_height, target_width = find_nearest_bucket(target_height, target_width, resolution=resolution)
|
169 |
+
print(f"Adjusted resolution: {target_width}x{target_height}")
|
170 |
+
else:
|
171 |
+
print(f"Using native resolution without resizing: {target_width}x{target_height}")
|
172 |
+
|
173 |
+
# 20250506 pftq: Preprocess frames to match original image processing
|
174 |
+
processed_frames = []
|
175 |
+
for i, frame in enumerate(frames):
|
176 |
+
#print(f"Preprocessing frame {i+1}/{num_frames}")
|
177 |
+
frame_np = resize_and_center_crop(frame, target_width=target_width, target_height=target_height)
|
178 |
+
processed_frames.append(frame_np)
|
179 |
+
processed_frames = np.stack(processed_frames) # Shape: (num_real_frames, height, width, channels)
|
180 |
+
print(f"Frames preprocessed: {processed_frames.shape}")
|
181 |
+
|
182 |
+
# 20250506 pftq: Save first frame for CLIP vision encoding
|
183 |
+
input_image_np = processed_frames[0]
|
184 |
+
|
185 |
+
# 20250506 pftq: Convert to tensor and normalize to [-1, 1]
|
186 |
+
print("Converting frames to tensor...")
|
187 |
+
frames_pt = torch.from_numpy(processed_frames).float() / 127.5 - 1
|
188 |
+
frames_pt = frames_pt.permute(0, 3, 1, 2) # Shape: (num_real_frames, channels, height, width)
|
189 |
+
frames_pt = frames_pt.unsqueeze(0) # Shape: (1, num_real_frames, channels, height, width)
|
190 |
+
frames_pt = frames_pt.permute(0, 2, 1, 3, 4) # Shape: (1, channels, num_real_frames, height, width)
|
191 |
+
print(f"Tensor shape: {frames_pt.shape}")
|
192 |
+
|
193 |
+
# 20250507 pftq: Save pixel frames for use in worker
|
194 |
+
input_video_pixels = frames_pt.cpu()
|
195 |
+
|
196 |
+
# 20250506 pftq: Move to device
|
197 |
+
print(f"Moving tensor to device: {device}")
|
198 |
+
frames_pt = frames_pt.to(device)
|
199 |
+
print("Tensor moved to device")
|
200 |
+
|
201 |
+
# 20250506 pftq: Move VAE to device
|
202 |
+
print(f"Moving VAE to device: {device}")
|
203 |
+
vae.to(device)
|
204 |
+
print("VAE moved to device")
|
205 |
+
|
206 |
+
# 20250506 pftq: Encode frames in batches
|
207 |
+
print(f"Encoding input video frames in VAE batch size {vae_batch_size} (reduce if memory issues here or if forcing video resolution)")
|
208 |
+
latents = []
|
209 |
+
vae.eval()
|
210 |
+
with torch.no_grad():
|
211 |
+
for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="Encoding video frames", mininterval=0.1):
|
212 |
+
#print(f"Encoding batch {i//vae_batch_size + 1}: frames {i} to {min(i + vae_batch_size, frames_pt.shape[2])}")
|
213 |
+
batch = frames_pt[:, :, i:i + vae_batch_size] # Shape: (1, channels, batch_size, height, width)
|
214 |
+
try:
|
215 |
+
# 20250506 pftq: Log GPU memory before encoding
|
216 |
+
if device == "cuda":
|
217 |
+
free_mem = torch.cuda.memory_allocated() / 1024**3
|
218 |
+
#print(f"GPU memory before encoding: {free_mem:.2f} GB")
|
219 |
+
batch_latent = vae_encode(batch, vae)
|
220 |
+
# 20250506 pftq: Synchronize CUDA to catch issues
|
221 |
+
if device == "cuda":
|
222 |
+
torch.cuda.synchronize()
|
223 |
+
#print(f"GPU memory after encoding: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
|
224 |
+
latents.append(batch_latent)
|
225 |
+
#print(f"Batch encoded, latent shape: {batch_latent.shape}")
|
226 |
+
except RuntimeError as e:
|
227 |
+
print(f"Error during VAE encoding: {str(e)}")
|
228 |
+
if device == "cuda" and "out of memory" in str(e).lower():
|
229 |
+
print("CUDA out of memory, try reducing vae_batch_size or using CPU")
|
230 |
+
raise
|
231 |
+
|
232 |
+
# 20250506 pftq: Concatenate latents
|
233 |
+
print("Concatenating latents...")
|
234 |
+
history_latents = torch.cat(latents, dim=2) # Shape: (1, channels, frames, height//8, width//8)
|
235 |
+
print(f"History latents shape: {history_latents.shape}")
|
236 |
+
|
237 |
+
# 20250506 pftq: Get first frame's latent
|
238 |
+
start_latent = history_latents[:, :, :1] # Shape: (1, channels, 1, height//8, width//8)
|
239 |
+
print(f"Start latent shape: {start_latent.shape}")
|
240 |
+
|
241 |
+
# 20250506 pftq: Move VAE back to CPU to free GPU memory
|
242 |
+
if device == "cuda":
|
243 |
+
vae.to(cpu)
|
244 |
+
torch.cuda.empty_cache()
|
245 |
+
print("VAE moved back to CPU, CUDA cache cleared")
|
246 |
+
|
247 |
+
return start_latent, input_image_np, history_latents, fps, target_height, target_width, input_video_pixels
|
248 |
+
|
249 |
+
except Exception as e:
|
250 |
+
print(f"Error in video_encode: {str(e)}")
|
251 |
+
raise
|
252 |
+
|
253 |
+
# 20250508 pftq: for saving prompt to mp4 metadata comments
|
254 |
+
def set_mp4_comments_imageio_ffmpeg(input_file, comments):
|
255 |
+
try:
|
256 |
+
# Get the path to the bundled FFmpeg binary from imageio-ffmpeg
|
257 |
+
ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
|
258 |
+
|
259 |
+
# Check if input file exists
|
260 |
+
if not os.path.exists(input_file):
|
261 |
+
print(f"Error: Input file {input_file} does not exist")
|
262 |
+
return False
|
263 |
+
|
264 |
+
# Create a temporary file path
|
265 |
+
temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
|
266 |
+
|
267 |
+
# FFmpeg command using the bundled binary
|
268 |
+
command = [
|
269 |
+
ffmpeg_path, # Use imageio-ffmpeg's FFmpeg
|
270 |
+
'-i', input_file, # input file
|
271 |
+
'-metadata', f'comment={comments}', # set comment metadata
|
272 |
+
'-c:v', 'copy', # copy video stream without re-encoding
|
273 |
+
'-c:a', 'copy', # copy audio stream without re-encoding
|
274 |
+
'-y', # overwrite output file if it exists
|
275 |
+
temp_file # temporary output file
|
276 |
+
]
|
277 |
+
|
278 |
+
# Run the FFmpeg command
|
279 |
+
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
280 |
+
|
281 |
+
if result.returncode == 0:
|
282 |
+
# Replace the original file with the modified one
|
283 |
+
shutil.move(temp_file, input_file)
|
284 |
+
print(f"Successfully added comments to {input_file}")
|
285 |
+
return True
|
286 |
+
else:
|
287 |
+
# Clean up temp file if FFmpeg fails
|
288 |
+
if os.path.exists(temp_file):
|
289 |
+
os.remove(temp_file)
|
290 |
+
print(f"Error: FFmpeg failed with message:\n{result.stderr}")
|
291 |
+
return False
|
292 |
+
|
293 |
+
except Exception as e:
|
294 |
+
# Clean up temp file in case of other errors
|
295 |
+
if 'temp_file' in locals() and os.path.exists(temp_file):
|
296 |
+
os.remove(temp_file)
|
297 |
+
print(f"Error saving prompt to video metadata, ffmpeg may be required: "+str(e))
|
298 |
+
return False
|
299 |
+
|
300 |
+
# 20250506 pftq: Modified worker to accept video input and clean frame count
|
301 |
+
@torch.no_grad()
|
302 |
+
def worker(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
303 |
+
|
304 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
305 |
+
|
306 |
+
try:
|
307 |
+
# Clean GPU
|
308 |
+
if not high_vram:
|
309 |
+
unload_complete_models(
|
310 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
311 |
+
)
|
312 |
+
|
313 |
+
# Text encoding
|
314 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
315 |
+
|
316 |
+
if not high_vram:
|
317 |
+
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
|
318 |
+
load_model_as_complete(text_encoder_2, target_device=gpu)
|
319 |
+
|
320 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
321 |
+
|
322 |
+
if cfg == 1:
|
323 |
+
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
324 |
+
else:
|
325 |
+
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
326 |
+
|
327 |
+
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
328 |
+
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
329 |
+
|
330 |
+
# 20250506 pftq: Processing input video instead of image
|
331 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
|
332 |
+
|
333 |
+
# 20250506 pftq: Encode video
|
334 |
+
#H, W = 640, 640 # Default resolution, will be adjusted
|
335 |
+
#height, width = find_nearest_bucket(H, W, resolution=640)
|
336 |
+
#start_latent, input_image_np, history_latents, fps = video_encode(input_video, vae, height, width, vae_batch_size=16, device=gpu)
|
337 |
+
start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)
|
338 |
+
|
339 |
+
#Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
340 |
+
|
341 |
+
# CLIP Vision
|
342 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
343 |
+
|
344 |
+
if not high_vram:
|
345 |
+
load_model_as_complete(image_encoder, target_device=gpu)
|
346 |
+
|
347 |
+
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
348 |
+
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
349 |
+
|
350 |
+
# Dtype
|
351 |
+
llama_vec = llama_vec.to(transformer.dtype)
|
352 |
+
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
353 |
+
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
354 |
+
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
355 |
+
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
356 |
+
|
357 |
+
total_latent_sections = (total_second_length * fps) / (latent_window_size * 4)
|
358 |
+
total_latent_sections = int(max(round(total_latent_sections), 1))
|
359 |
+
|
360 |
+
for idx in range(batch):
|
361 |
+
if idx>0:
|
362 |
+
seed = seed + 1
|
363 |
+
|
364 |
+
if batch > 1:
|
365 |
+
print(f"Beginning video {idx+1} of {batch} with seed {seed} ")
|
366 |
+
|
367 |
+
#job_id = generate_timestamp()
|
368 |
+
job_id = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+f"_framepackf1-videoinput_{width}-{total_second_length}sec_seed-{seed}_steps-{steps}_distilled-{gs}_cfg-{cfg}" # 20250506 pftq: easier to read timestamp and filename
|
369 |
+
|
370 |
+
# Sampling
|
371 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
372 |
+
|
373 |
+
rnd = torch.Generator("cpu").manual_seed(seed)
|
374 |
+
|
375 |
+
# 20250506 pftq: Initialize history_latents with video latents
|
376 |
+
history_latents = video_latents.cpu()
|
377 |
+
total_generated_latent_frames = history_latents.shape[2]
|
378 |
+
# 20250506 pftq: Initialize history_pixels to fix UnboundLocalError
|
379 |
+
history_pixels = None
|
380 |
+
previous_video = None
|
381 |
+
|
382 |
+
# 20250507 pftq: hot fix for initial video being corrupted by vae encoding, issue with ghosting because of slight differences
|
383 |
+
#history_pixels = input_video_pixels
|
384 |
+
#save_bcthw_as_mp4(vae_decode(video_latents, vae).cpu(), os.path.join(outputs_folder, f'{job_id}_input_video.mp4'), fps=fps, crf=mp4_crf) # 20250507 pftq: test fast movement corrupted by vae encoding if vae batch size too low
|
385 |
+
|
386 |
+
for section_index in range(total_latent_sections):
|
387 |
+
if stream.input_queue.top() == 'end':
|
388 |
+
stream.output_queue.push(('end', None))
|
389 |
+
return
|
390 |
+
|
391 |
+
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
|
392 |
+
|
393 |
+
if not high_vram:
|
394 |
+
unload_complete_models()
|
395 |
+
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
396 |
+
|
397 |
+
if use_teacache:
|
398 |
+
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
399 |
+
else:
|
400 |
+
transformer.initialize_teacache(enable_teacache=False)
|
401 |
+
|
402 |
+
def callback(d):
|
403 |
+
preview = d['denoised']
|
404 |
+
preview = vae_decode_fake(preview)
|
405 |
+
|
406 |
+
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
407 |
+
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
408 |
+
|
409 |
+
if stream.input_queue.top() == 'end':
|
410 |
+
stream.output_queue.push(('end', None))
|
411 |
+
raise KeyboardInterrupt('User ends the task.')
|
412 |
+
|
413 |
+
current_step = d['i'] + 1
|
414 |
+
percentage = int(100.0 * current_step / steps)
|
415 |
+
hint = f'Sampling {current_step}/{steps}'
|
416 |
+
desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / fps) :.2f} seconds (FPS-{fps}), Seed: {seed}, Video {idx+1} of {batch}. The video is generating part {section_index+1} of {total_latent_sections}...'
|
417 |
+
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
418 |
+
return
|
419 |
+
|
420 |
+
# 20250506 pftq: Use user-specified number of context frames, matching original allocation for num_clean_frames=2
|
421 |
+
available_frames = history_latents.shape[2] # Number of latent frames
|
422 |
+
max_pixel_frames = min(latent_window_size * 4 - 3, available_frames * 4) # Cap at available pixel frames
|
423 |
+
adjusted_latent_frames = max(1, (max_pixel_frames + 3) // 4) # Convert back to latent frames
|
424 |
+
# Adjust num_clean_frames to match original behavior: num_clean_frames=2 means 1 frame for clean_latents_1x
|
425 |
+
effective_clean_frames = max(0, num_clean_frames - 1) if num_clean_frames > 1 else 0
|
426 |
+
effective_clean_frames = min(effective_clean_frames, available_frames - 2) if available_frames > 2 else 0 # 20250507 pftq: changed 1 to 2 for edge case for <=1 sec videos
|
427 |
+
num_2x_frames = min(2, max(1, available_frames - effective_clean_frames - 1)) if available_frames > effective_clean_frames + 1 else 0 # 20250507 pftq: subtracted 1 for edge case for <=1 sec videos
|
428 |
+
num_4x_frames = min(16, max(1, available_frames - effective_clean_frames - num_2x_frames)) if available_frames > effective_clean_frames + num_2x_frames else 0 # 20250507 pftq: Edge case for <=1 sec
|
429 |
+
|
430 |
+
total_context_frames = num_4x_frames + num_2x_frames + effective_clean_frames
|
431 |
+
total_context_frames = min(total_context_frames, available_frames) # 20250507 pftq: Edge case for <=1 sec videos
|
432 |
+
|
433 |
+
indices = torch.arange(0, sum([1, num_4x_frames, num_2x_frames, effective_clean_frames, adjusted_latent_frames])).unsqueeze(0) # 20250507 pftq: latent_window_size to adjusted_latent_frames for edge case for <=1 sec videos
|
434 |
+
clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split(
|
435 |
+
[1, num_4x_frames, num_2x_frames, effective_clean_frames, adjusted_latent_frames], dim=1 # 20250507 pftq: latent_window_size to adjusted_latent_frames for edge case for <=1 sec videos
|
436 |
+
)
|
437 |
+
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
|
438 |
+
|
439 |
+
# 20250506 pftq: Split history_latents dynamically based on available frames
|
440 |
+
fallback_frame_count = 2 # 20250507 pftq: Changed 0 to 2 Edge case for <=1 sec videos
|
441 |
+
context_frames = history_latents[:, :, -total_context_frames:, :, :] if total_context_frames > 0 else history_latents[:, :, :fallback_frame_count, :, :]
|
442 |
+
if total_context_frames > 0:
|
443 |
+
split_sizes = [num_4x_frames, num_2x_frames, effective_clean_frames]
|
444 |
+
split_sizes = [s for s in split_sizes if s > 0] # Remove zero sizes
|
445 |
+
if split_sizes:
|
446 |
+
splits = context_frames.split(split_sizes, dim=2)
|
447 |
+
split_idx = 0
|
448 |
+
clean_latents_4x = splits[split_idx] if num_4x_frames > 0 else history_latents[:, :, :fallback_frame_count, :, :]
|
449 |
+
if clean_latents_4x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos
|
450 |
+
clean_latents_4x = torch.cat([clean_latents_4x, clean_latents_4x[:, :, -1:, :, :]], dim=2)[:, :, :2, :, :]
|
451 |
+
split_idx += 1 if num_4x_frames > 0 else 0
|
452 |
+
clean_latents_2x = splits[split_idx] if num_2x_frames > 0 and split_idx < len(splits) else history_latents[:, :, :fallback_frame_count, :, :]
|
453 |
+
if clean_latents_2x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos
|
454 |
+
clean_latents_2x = torch.cat([clean_latents_2x, clean_latents_2x[:, :, -1:, :, :]], dim=2)[:, :, :2, :, :]
|
455 |
+
split_idx += 1 if num_2x_frames > 0 else 0
|
456 |
+
clean_latents_1x = splits[split_idx] if effective_clean_frames > 0 and split_idx < len(splits) else history_latents[:, :, :fallback_frame_count, :, :]
|
457 |
+
else:
|
458 |
+
clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :fallback_frame_count, :, :]
|
459 |
+
else:
|
460 |
+
clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :fallback_frame_count, :, :]
|
461 |
+
|
462 |
+
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
|
463 |
+
|
464 |
+
# 20250507 pftq: Fix for <=1 sec videos.
|
465 |
+
max_frames = min(latent_window_size * 4 - 3, history_latents.shape[2] * 4)
|
466 |
+
|
467 |
+
generated_latents = sample_hunyuan(
|
468 |
+
transformer=transformer,
|
469 |
+
sampler='unipc',
|
470 |
+
width=width,
|
471 |
+
height=height,
|
472 |
+
frames=max_frames,
|
473 |
+
real_guidance_scale=cfg,
|
474 |
+
distilled_guidance_scale=gs,
|
475 |
+
guidance_rescale=rs,
|
476 |
+
num_inference_steps=steps,
|
477 |
+
generator=rnd,
|
478 |
+
prompt_embeds=llama_vec,
|
479 |
+
prompt_embeds_mask=llama_attention_mask,
|
480 |
+
prompt_poolers=clip_l_pooler,
|
481 |
+
negative_prompt_embeds=llama_vec_n,
|
482 |
+
negative_prompt_embeds_mask=llama_attention_mask_n,
|
483 |
+
negative_prompt_poolers=clip_l_pooler_n,
|
484 |
+
device=gpu,
|
485 |
+
dtype=torch.bfloat16,
|
486 |
+
image_embeddings=image_encoder_last_hidden_state,
|
487 |
+
latent_indices=latent_indices,
|
488 |
+
clean_latents=clean_latents,
|
489 |
+
clean_latent_indices=clean_latent_indices,
|
490 |
+
clean_latents_2x=clean_latents_2x,
|
491 |
+
clean_latent_2x_indices=clean_latent_2x_indices,
|
492 |
+
clean_latents_4x=clean_latents_4x,
|
493 |
+
clean_latent_4x_indices=clean_latent_4x_indices,
|
494 |
+
callback=callback,
|
495 |
+
)
|
496 |
+
|
497 |
+
total_generated_latent_frames += int(generated_latents.shape[2])
|
498 |
+
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
|
499 |
+
|
500 |
+
if not high_vram:
|
501 |
+
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
502 |
+
load_model_as_complete(vae, target_device=gpu)
|
503 |
+
|
504 |
+
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
|
505 |
+
|
506 |
+
if history_pixels is None:
|
507 |
+
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
508 |
+
else:
|
509 |
+
section_latent_frames = latent_window_size * 2
|
510 |
+
overlapped_frames = min(latent_window_size * 4 - 3, history_pixels.shape[2])
|
511 |
+
|
512 |
+
#if section_index == 0:
|
513 |
+
#extra_latents = 1 # Add up to 2 extra latent frames for smoother overlap to initial video
|
514 |
+
#extra_pixel_frames = extra_latents * 4 # Approx. 4 pixel frames per latent
|
515 |
+
#overlapped_frames = min(overlapped_frames + extra_pixel_frames, history_pixels.shape[2], section_latent_frames * 4)
|
516 |
+
|
517 |
+
current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
|
518 |
+
history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
|
519 |
+
|
520 |
+
if not high_vram:
|
521 |
+
unload_complete_models()
|
522 |
+
|
523 |
+
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
524 |
+
|
525 |
+
# 20250506 pftq: Use input video FPS for output
|
526 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
|
527 |
+
print(f"Latest video saved: {output_filename}")
|
528 |
+
# 20250508 pftq: Save prompt to mp4 metadata comments
|
529 |
+
set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}");
|
530 |
+
print(f"Prompt saved to mp4 metadata comments: {output_filename}")
|
531 |
+
|
532 |
+
# 20250506 pftq: Clean up previous partial files
|
533 |
+
if previous_video is not None and os.path.exists(previous_video):
|
534 |
+
try:
|
535 |
+
os.remove(previous_video)
|
536 |
+
print(f"Previous partial video deleted: {previous_video}")
|
537 |
+
except Exception as e:
|
538 |
+
print(f"Error deleting previous partial video {previous_video}: {e}")
|
539 |
+
previous_video = output_filename
|
540 |
+
|
541 |
+
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
542 |
+
|
543 |
+
stream.output_queue.push(('file', output_filename))
|
544 |
+
except:
|
545 |
+
traceback.print_exc()
|
546 |
+
|
547 |
+
if not high_vram:
|
548 |
+
unload_complete_models(
|
549 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
550 |
+
)
|
551 |
+
|
552 |
+
stream.output_queue.push(('end', None))
|
553 |
+
return
|
554 |
+
|
555 |
+
# 20250506 pftq: Modified process to pass clean frame count, etc from video_encode
|
556 |
+
def process(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
557 |
+
global stream, high_vram
|
558 |
+
# 20250506 pftq: Updated assertion for video input
|
559 |
+
assert input_video is not None, 'No input video!'
|
560 |
+
|
561 |
+
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
562 |
+
|
563 |
+
# 20250507 pftq: Even the H100 needs offloading if the video dimensions are 720p or higher
|
564 |
+
if high_vram and (no_resize or resolution>640):
|
565 |
+
print("Disabling high vram mode due to no resize and/or potentially higher resolution...")
|
566 |
+
high_vram = False
|
567 |
+
vae.enable_slicing()
|
568 |
+
vae.enable_tiling()
|
569 |
+
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
570 |
+
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
571 |
+
|
572 |
+
# 20250508 pftq: automatically set distilled cfg to 1 if cfg is used
|
573 |
+
if cfg > 1:
|
574 |
+
gs = 1
|
575 |
+
|
576 |
+
stream = AsyncStream()
|
577 |
+
|
578 |
+
# 20250506 pftq: Pass num_clean_frames, vae_batch, etc
|
579 |
+
async_run(worker, input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch)
|
580 |
+
|
581 |
+
output_filename = None
|
582 |
+
|
583 |
+
while True:
|
584 |
+
flag, data = stream.output_queue.next()
|
585 |
+
|
586 |
+
if flag == 'file':
|
587 |
+
output_filename = data
|
588 |
+
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
|
589 |
+
|
590 |
+
if flag == 'progress':
|
591 |
+
preview, desc, html = data
|
592 |
+
#yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
593 |
+
yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background
|
594 |
+
|
595 |
+
if flag == 'end':
|
596 |
+
yield output_filename, gr.update(visible=False), desc+' Video complete.', '', gr.update(interactive=True), gr.update(interactive=False)
|
597 |
+
break
|
598 |
+
|
599 |
+
def end_process():
|
600 |
+
stream.input_queue.push('end')
|
601 |
+
|
602 |
+
quick_prompts = [
|
603 |
+
'The girl dances gracefully, with clear movements, full of charm.',
|
604 |
+
'A character doing some simple body movements.',
|
605 |
+
]
|
606 |
+
quick_prompts = [[x] for x in quick_prompts]
|
607 |
+
|
608 |
+
css = make_progress_bar_css()
|
609 |
+
block = gr.Blocks(css=css).queue()
|
610 |
+
with block:
|
611 |
+
# 20250506 pftq: Updated title to reflect video input functionality
|
612 |
+
gr.Markdown('# Framepack F1 with Video Input (Video Extension)')
|
613 |
+
with gr.Row():
|
614 |
+
with gr.Column():
|
615 |
+
# 20250506 pftq: Changed to Video input from Image
|
616 |
+
input_video = gr.Video(sources='upload', label="Input Video", height=320)
|
617 |
+
prompt = gr.Textbox(label="Prompt", value='')
|
618 |
+
#example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
|
619 |
+
#example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
|
620 |
+
|
621 |
+
with gr.Row():
|
622 |
+
start_button = gr.Button(value="Start Generation")
|
623 |
+
end_button = gr.Button(value="End Generation", interactive=False)
|
624 |
+
|
625 |
+
with gr.Group():
|
626 |
+
with gr.Row():
|
627 |
+
use_teacache = gr.Checkbox(label='Use TeaCache', value=False, info='Faster speed, but often makes hands and fingers slightly worse.')
|
628 |
+
no_resize = gr.Checkbox(label='Force Original Video Resolution (No Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).')
|
629 |
+
|
630 |
+
seed = gr.Number(label="Seed", value=31337, precision=0)
|
631 |
+
|
632 |
+
batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.')
|
633 |
+
|
634 |
+
resolution = gr.Number(label="Resolution (max width or height)", value=640, precision=0, visible=False)
|
635 |
+
|
636 |
+
total_second_length = gr.Slider(label="Additional Video Length to Generate (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
|
637 |
+
|
638 |
+
# 20250506 pftq: Reduced default distilled guidance scale to improve adherence to input video
|
639 |
+
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=3.0, step=0.01, info='Prompt adherence at the cost of less details from the input video, but to a lesser extent than Context Frames.')
|
640 |
+
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=True, info='Use this instead of Distilled for more detail/control + Negative Prompt (make sure Distilled set to 1). Doubles render time.') # Should not change
|
641 |
+
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
|
642 |
+
|
643 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=True, info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).')
|
644 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Increase for more quality, especially if using high non-distilled CFG.')
|
645 |
+
|
646 |
+
# 20250506 pftq: Renamed slider to Number of Context Frames and updated description
|
647 |
+
num_clean_frames = gr.Slider(label="Number of Context Frames", minimum=2, maximum=10, value=5, step=1, info="Retain more video details but increase memory use. Reduce to 2 if memory issues.")
|
648 |
+
|
649 |
+
default_vae = 32
|
650 |
+
if high_vram:
|
651 |
+
default_vae = 128
|
652 |
+
elif free_mem_gb>=20:
|
653 |
+
default_vae = 64
|
654 |
+
|
655 |
+
vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=256, value=default_vae, step=4, info="Reduce if running out of memory. Increase for better quality frames during fast motion.")
|
656 |
+
|
657 |
+
latent_window_size = gr.Slider(label="Latent Window Size", minimum=9, maximum=33, value=9, step=1, visible=True, info='Generate more frames at a time (larger chunks). Less degradation and better blending but higher VRAM cost.')
|
658 |
+
|
659 |
+
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
|
660 |
+
|
661 |
+
mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
|
662 |
+
|
663 |
+
with gr.Column():
|
664 |
+
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
|
665 |
+
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
|
666 |
+
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
667 |
+
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
668 |
+
|
669 |
+
gr.HTML("""
|
670 |
+
<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>
|
671 |
+
""")
|
672 |
+
|
673 |
+
# 20250506 pftq: Updated inputs to include num_clean_frames
|
674 |
+
ips = [input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
|
675 |
+
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
|
676 |
+
end_button.click(fn=end_process)
|
677 |
+
|
678 |
+
block.launch(
|
679 |
+
server_name=args.server,
|
680 |
+
server_port=args.port,
|
681 |
+
share=args.share,
|
682 |
+
inbrowser=args.inbrowser,
|
683 |
+
)
|