Spaces:
Running
on
Zero
Running
on
Zero
Create app_endframe.py
Browse files- app_endframe.py +802 -0
app_endframe.py
ADDED
@@ -0,0 +1,802 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers_helper.hf_login import login
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
import traceback
|
10 |
+
import einops
|
11 |
+
import safetensors.torch as sf
|
12 |
+
import numpy as np
|
13 |
+
import argparse
|
14 |
+
import math
|
15 |
+
# 20250506 pftq: Added for video input loading
|
16 |
+
import decord
|
17 |
+
# 20250506 pftq: Added for progress bars in video_encode
|
18 |
+
from tqdm import tqdm
|
19 |
+
# 20250506 pftq: Normalize file paths for Windows compatibility
|
20 |
+
import pathlib
|
21 |
+
# 20250506 pftq: for easier to read timestamp
|
22 |
+
from datetime import datetime
|
23 |
+
# 20250508 pftq: for saving prompt to mp4 comments metadata
|
24 |
+
import imageio_ffmpeg
|
25 |
+
import tempfile
|
26 |
+
import shutil
|
27 |
+
import subprocess
|
28 |
+
import spaces
|
29 |
+
from PIL import Image
|
30 |
+
from diffusers import AutoencoderKLHunyuanVideo
|
31 |
+
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
|
32 |
+
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
|
33 |
+
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
|
34 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
35 |
+
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
36 |
+
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
|
37 |
+
from diffusers_helper.thread_utils import AsyncStream, async_run
|
38 |
+
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
39 |
+
from transformers import SiglipImageProcessor, SiglipVisionModel
|
40 |
+
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
41 |
+
from diffusers_helper.bucket_tools import find_nearest_bucket
|
42 |
+
|
43 |
+
parser = argparse.ArgumentParser()
|
44 |
+
parser.add_argument('--share', action='store_true')
|
45 |
+
parser.add_argument("--server", type=str, default='0.0.0.0')
|
46 |
+
parser.add_argument("--port", type=int, required=False)
|
47 |
+
parser.add_argument("--inbrowser", action='store_true')
|
48 |
+
args = parser.parse_args()
|
49 |
+
|
50 |
+
print(args)
|
51 |
+
|
52 |
+
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
53 |
+
high_vram = free_mem_gb > 60
|
54 |
+
|
55 |
+
print(f'Free VRAM {free_mem_gb} GB')
|
56 |
+
print(f'High-VRAM Mode: {high_vram}')
|
57 |
+
|
58 |
+
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
|
59 |
+
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
|
60 |
+
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
|
61 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
|
62 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
|
63 |
+
|
64 |
+
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
|
65 |
+
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
|
66 |
+
|
67 |
+
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()
|
68 |
+
|
69 |
+
vae.eval()
|
70 |
+
text_encoder.eval()
|
71 |
+
text_encoder_2.eval()
|
72 |
+
image_encoder.eval()
|
73 |
+
transformer.eval()
|
74 |
+
|
75 |
+
if not high_vram:
|
76 |
+
vae.enable_slicing()
|
77 |
+
vae.enable_tiling()
|
78 |
+
|
79 |
+
transformer.high_quality_fp32_output_for_inference = True
|
80 |
+
print('transformer.high_quality_fp32_output_for_inference = True')
|
81 |
+
|
82 |
+
transformer.to(dtype=torch.bfloat16)
|
83 |
+
vae.to(dtype=torch.float16)
|
84 |
+
image_encoder.to(dtype=torch.float16)
|
85 |
+
text_encoder.to(dtype=torch.float16)
|
86 |
+
text_encoder_2.to(dtype=torch.float16)
|
87 |
+
|
88 |
+
vae.requires_grad_(False)
|
89 |
+
text_encoder.requires_grad_(False)
|
90 |
+
text_encoder_2.requires_grad_(False)
|
91 |
+
image_encoder.requires_grad_(False)
|
92 |
+
transformer.requires_grad_(False)
|
93 |
+
|
94 |
+
if not high_vram:
|
95 |
+
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
|
96 |
+
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
97 |
+
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
98 |
+
else:
|
99 |
+
text_encoder.to(gpu)
|
100 |
+
text_encoder_2.to(gpu)
|
101 |
+
image_encoder.to(gpu)
|
102 |
+
vae.to(gpu)
|
103 |
+
transformer.to(gpu)
|
104 |
+
|
105 |
+
stream = AsyncStream()
|
106 |
+
|
107 |
+
outputs_folder = './outputs/'
|
108 |
+
os.makedirs(outputs_folder, exist_ok=True)
|
109 |
+
|
110 |
+
# 20250506 pftq: Added function to encode input video frames into latents
|
111 |
+
@torch.no_grad()
|
112 |
+
def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=16, device="cuda", width=None, height=None):
|
113 |
+
"""
|
114 |
+
Encode a video into latent representations using the VAE.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
video_path: Path to the input video file.
|
118 |
+
vae: AutoencoderKLHunyuanVideo model.
|
119 |
+
height, width: Target resolution for resizing frames.
|
120 |
+
vae_batch_size: Number of frames to process per batch.
|
121 |
+
device: Device for computation (e.g., "cuda").
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
start_latent: Latent of the first frame (for compatibility with original code).
|
125 |
+
input_image_np: First frame as numpy array (for CLIP vision encoding).
|
126 |
+
history_latents: Latents of all frames (shape: [1, channels, frames, height//8, width//8]).
|
127 |
+
fps: Frames per second of the input video.
|
128 |
+
"""
|
129 |
+
# 20250506 pftq: Normalize video path for Windows compatibility
|
130 |
+
video_path = str(pathlib.Path(video_path).resolve())
|
131 |
+
print(f"Processing video: {video_path}")
|
132 |
+
|
133 |
+
# 20250506 pftq: Check CUDA availability and fallback to CPU if needed
|
134 |
+
if device == "cuda" and not torch.cuda.is_available():
|
135 |
+
print("CUDA is not available, falling back to CPU")
|
136 |
+
device = "cpu"
|
137 |
+
|
138 |
+
try:
|
139 |
+
# 20250506 pftq: Load video and get FPS
|
140 |
+
print("Initializing VideoReader...")
|
141 |
+
vr = decord.VideoReader(video_path)
|
142 |
+
fps = vr.get_avg_fps() # Get input video FPS
|
143 |
+
num_real_frames = len(vr)
|
144 |
+
print(f"Video loaded: {num_real_frames} frames, FPS: {fps}")
|
145 |
+
|
146 |
+
# Truncate to nearest latent size (multiple of 4)
|
147 |
+
latent_size_factor = 4
|
148 |
+
num_frames = (num_real_frames // latent_size_factor) * latent_size_factor
|
149 |
+
if num_frames != num_real_frames:
|
150 |
+
print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility")
|
151 |
+
num_real_frames = num_frames
|
152 |
+
|
153 |
+
# 20250506 pftq: Read frames
|
154 |
+
print("Reading video frames...")
|
155 |
+
frames = vr.get_batch(range(num_real_frames)).asnumpy() # Shape: (num_real_frames, height, width, channels)
|
156 |
+
print(f"Frames read: {frames.shape}")
|
157 |
+
|
158 |
+
# 20250506 pftq: Get native video resolution
|
159 |
+
native_height, native_width = frames.shape[1], frames.shape[2]
|
160 |
+
print(f"Native video resolution: {native_width}x{native_height}")
|
161 |
+
|
162 |
+
# 20250506 pftq: Use native resolution if height/width not specified, otherwise use provided values
|
163 |
+
target_height = native_height if height is None else height
|
164 |
+
target_width = native_width if width is None else width
|
165 |
+
|
166 |
+
# 20250506 pftq: Adjust to nearest bucket for model compatibility
|
167 |
+
if not no_resize:
|
168 |
+
target_height, target_width = find_nearest_bucket(target_height, target_width, resolution=resolution)
|
169 |
+
print(f"Adjusted resolution: {target_width}x{target_height}")
|
170 |
+
else:
|
171 |
+
print(f"Using native resolution without resizing: {target_width}x{target_height}")
|
172 |
+
|
173 |
+
# 20250506 pftq: Preprocess frames to match original image processing
|
174 |
+
processed_frames = []
|
175 |
+
for i, frame in enumerate(frames):
|
176 |
+
#print(f"Preprocessing frame {i+1}/{num_frames}")
|
177 |
+
frame_np = resize_and_center_crop(frame, target_width=target_width, target_height=target_height)
|
178 |
+
processed_frames.append(frame_np)
|
179 |
+
processed_frames = np.stack(processed_frames) # Shape: (num_real_frames, height, width, channels)
|
180 |
+
print(f"Frames preprocessed: {processed_frames.shape}")
|
181 |
+
|
182 |
+
# 20250506 pftq: Save first frame for CLIP vision encoding
|
183 |
+
input_image_np = processed_frames[0]
|
184 |
+
end_of_input_video_image_np = processed_frames[-1]
|
185 |
+
|
186 |
+
# 20250506 pftq: Convert to tensor and normalize to [-1, 1]
|
187 |
+
print("Converting frames to tensor...")
|
188 |
+
frames_pt = torch.from_numpy(processed_frames).float() / 127.5 - 1
|
189 |
+
frames_pt = frames_pt.permute(0, 3, 1, 2) # Shape: (num_real_frames, channels, height, width)
|
190 |
+
frames_pt = frames_pt.unsqueeze(0) # Shape: (1, num_real_frames, channels, height, width)
|
191 |
+
frames_pt = frames_pt.permute(0, 2, 1, 3, 4) # Shape: (1, channels, num_real_frames, height, width)
|
192 |
+
print(f"Tensor shape: {frames_pt.shape}")
|
193 |
+
|
194 |
+
# 20250507 pftq: Save pixel frames for use in worker
|
195 |
+
input_video_pixels = frames_pt.cpu()
|
196 |
+
|
197 |
+
# 20250506 pftq: Move to device
|
198 |
+
print(f"Moving tensor to device: {device}")
|
199 |
+
frames_pt = frames_pt.to(device)
|
200 |
+
print("Tensor moved to device")
|
201 |
+
|
202 |
+
# 20250506 pftq: Move VAE to device
|
203 |
+
print(f"Moving VAE to device: {device}")
|
204 |
+
vae.to(device)
|
205 |
+
print("VAE moved to device")
|
206 |
+
|
207 |
+
# 20250506 pftq: Encode frames in batches
|
208 |
+
print(f"Encoding input video frames in VAE batch size {vae_batch_size} (reduce if memory issues here or if forcing video resolution)")
|
209 |
+
latents = []
|
210 |
+
vae.eval()
|
211 |
+
with torch.no_grad():
|
212 |
+
for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="Encoding video frames", mininterval=0.1):
|
213 |
+
#print(f"Encoding batch {i//vae_batch_size + 1}: frames {i} to {min(i + vae_batch_size, frames_pt.shape[2])}")
|
214 |
+
batch = frames_pt[:, :, i:i + vae_batch_size] # Shape: (1, channels, batch_size, height, width)
|
215 |
+
try:
|
216 |
+
# 20250506 pftq: Log GPU memory before encoding
|
217 |
+
if device == "cuda":
|
218 |
+
free_mem = torch.cuda.memory_allocated() / 1024**3
|
219 |
+
#print(f"GPU memory before encoding: {free_mem:.2f} GB")
|
220 |
+
batch_latent = vae_encode(batch, vae)
|
221 |
+
# 20250506 pftq: Synchronize CUDA to catch issues
|
222 |
+
if device == "cuda":
|
223 |
+
torch.cuda.synchronize()
|
224 |
+
#print(f"GPU memory after encoding: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
|
225 |
+
latents.append(batch_latent)
|
226 |
+
#print(f"Batch encoded, latent shape: {batch_latent.shape}")
|
227 |
+
except RuntimeError as e:
|
228 |
+
print(f"Error during VAE encoding: {str(e)}")
|
229 |
+
if device == "cuda" and "out of memory" in str(e).lower():
|
230 |
+
print("CUDA out of memory, try reducing vae_batch_size or using CPU")
|
231 |
+
raise
|
232 |
+
|
233 |
+
# 20250506 pftq: Concatenate latents
|
234 |
+
print("Concatenating latents...")
|
235 |
+
history_latents = torch.cat(latents, dim=2) # Shape: (1, channels, frames, height//8, width//8)
|
236 |
+
print(f"History latents shape: {history_latents.shape}")
|
237 |
+
|
238 |
+
# 20250506 pftq: Get first frame's latent
|
239 |
+
start_latent = history_latents[:, :, :1] # Shape: (1, channels, 1, height//8, width//8)
|
240 |
+
end_of_input_video_latent = history_latents[:, :, -1:] # Shape: (1, channels, 1, height//8, width//8)
|
241 |
+
print(f"Start latent shape: {start_latent.shape}")
|
242 |
+
|
243 |
+
# 20250506 pftq: Move VAE back to CPU to free GPU memory
|
244 |
+
if device == "cuda":
|
245 |
+
vae.to(cpu)
|
246 |
+
torch.cuda.empty_cache()
|
247 |
+
print("VAE moved back to CPU, CUDA cache cleared")
|
248 |
+
|
249 |
+
return start_latent, input_image_np, history_latents, fps, target_height, target_width, input_video_pixels, end_of_input_video_latent, end_of_input_video_image_np
|
250 |
+
|
251 |
+
except Exception as e:
|
252 |
+
print(f"Error in video_encode: {str(e)}")
|
253 |
+
raise
|
254 |
+
|
255 |
+
|
256 |
+
# 20250507 pftq: New function to encode a single image (end frame)
|
257 |
+
@torch.no_grad()
|
258 |
+
def image_encode(image_np, target_width, target_height, vae, image_encoder, feature_extractor, device="cuda"):
|
259 |
+
"""
|
260 |
+
Encode a single image into a latent and compute its CLIP vision embedding.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
image_np: Input image as numpy array.
|
264 |
+
target_width, target_height: Exact resolution to resize the image to (matches start frame).
|
265 |
+
vae: AutoencoderKLHunyuanVideo model.
|
266 |
+
image_encoder: SiglipVisionModel for CLIP vision encoding.
|
267 |
+
feature_extractor: SiglipImageProcessor for preprocessing.
|
268 |
+
device: Device for computation (e.g., "cuda").
|
269 |
+
|
270 |
+
Returns:
|
271 |
+
latent: Latent representation of the image (shape: [1, channels, 1, height//8, width//8]).
|
272 |
+
clip_embedding: CLIP vision embedding of the image.
|
273 |
+
processed_image_np: Processed image as numpy array (after resizing).
|
274 |
+
"""
|
275 |
+
# 20250507 pftq: Process end frame with exact start frame dimensions
|
276 |
+
print("Processing end frame...")
|
277 |
+
try:
|
278 |
+
print(f"Using exact start frame resolution for end frame: {target_width}x{target_height}")
|
279 |
+
|
280 |
+
# Resize and preprocess image to match start frame
|
281 |
+
processed_image_np = resize_and_center_crop(image_np, target_width=target_width, target_height=target_height)
|
282 |
+
|
283 |
+
# Convert to tensor and normalize
|
284 |
+
image_pt = torch.from_numpy(processed_image_np).float() / 127.5 - 1
|
285 |
+
image_pt = image_pt.permute(2, 0, 1).unsqueeze(0).unsqueeze(2) # Shape: [1, channels, 1, height, width]
|
286 |
+
image_pt = image_pt.to(device)
|
287 |
+
|
288 |
+
# Move VAE to device
|
289 |
+
vae.to(device)
|
290 |
+
|
291 |
+
# Encode to latent
|
292 |
+
latent = vae_encode(image_pt, vae)
|
293 |
+
print(f"image_encode vae output shape: {latent.shape}")
|
294 |
+
|
295 |
+
# Move image encoder to device
|
296 |
+
image_encoder.to(device)
|
297 |
+
|
298 |
+
# Compute CLIP vision embedding
|
299 |
+
clip_embedding = hf_clip_vision_encode(processed_image_np, feature_extractor, image_encoder).last_hidden_state
|
300 |
+
|
301 |
+
# Move models back to CPU and clear cache
|
302 |
+
if device == "cuda":
|
303 |
+
vae.to(cpu)
|
304 |
+
image_encoder.to(cpu)
|
305 |
+
torch.cuda.empty_cache()
|
306 |
+
print("VAE and image encoder moved back to CPU, CUDA cache cleared")
|
307 |
+
|
308 |
+
print(f"End latent shape: {latent.shape}")
|
309 |
+
return latent, clip_embedding, processed_image_np
|
310 |
+
|
311 |
+
except Exception as e:
|
312 |
+
print(f"Error in image_encode: {str(e)}")
|
313 |
+
raise
|
314 |
+
|
315 |
+
# 20250508 pftq: for saving prompt to mp4 metadata comments
|
316 |
+
def set_mp4_comments_imageio_ffmpeg(input_file, comments):
|
317 |
+
try:
|
318 |
+
# Get the path to the bundled FFmpeg binary from imageio-ffmpeg
|
319 |
+
ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
|
320 |
+
|
321 |
+
# Check if input file exists
|
322 |
+
if not os.path.exists(input_file):
|
323 |
+
print(f"Error: Input file {input_file} does not exist")
|
324 |
+
return False
|
325 |
+
|
326 |
+
# Create a temporary file path
|
327 |
+
temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
|
328 |
+
|
329 |
+
# FFmpeg command using the bundled binary
|
330 |
+
command = [
|
331 |
+
ffmpeg_path, # Use imageio-ffmpeg's FFmpeg
|
332 |
+
'-i', input_file, # input file
|
333 |
+
'-metadata', f'comment={comments}', # set comment metadata
|
334 |
+
'-c:v', 'copy', # copy video stream without re-encoding
|
335 |
+
'-c:a', 'copy', # copy audio stream without re-encoding
|
336 |
+
'-y', # overwrite output file if it exists
|
337 |
+
temp_file # temporary output file
|
338 |
+
]
|
339 |
+
|
340 |
+
# Run the FFmpeg command
|
341 |
+
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
342 |
+
|
343 |
+
if result.returncode == 0:
|
344 |
+
# Replace the original file with the modified one
|
345 |
+
shutil.move(temp_file, input_file)
|
346 |
+
print(f"Successfully added comments to {input_file}")
|
347 |
+
return True
|
348 |
+
else:
|
349 |
+
# Clean up temp file if FFmpeg fails
|
350 |
+
if os.path.exists(temp_file):
|
351 |
+
os.remove(temp_file)
|
352 |
+
print(f"Error: FFmpeg failed with message:\n{result.stderr}")
|
353 |
+
return False
|
354 |
+
|
355 |
+
except Exception as e:
|
356 |
+
# Clean up temp file in case of other errors
|
357 |
+
if 'temp_file' in locals() and os.path.exists(temp_file):
|
358 |
+
os.remove(temp_file)
|
359 |
+
print(f"Error saving prompt to video metadata, ffmpeg may be required: "+str(e))
|
360 |
+
return False
|
361 |
+
|
362 |
+
# 20250506 pftq: Modified worker to accept video input, and clean frame count
|
363 |
+
@torch.no_grad()
|
364 |
+
def worker(input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
365 |
+
|
366 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
367 |
+
|
368 |
+
try:
|
369 |
+
# Clean GPU
|
370 |
+
if not high_vram:
|
371 |
+
unload_complete_models(
|
372 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
373 |
+
)
|
374 |
+
|
375 |
+
# Text encoding
|
376 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
377 |
+
|
378 |
+
if not high_vram:
|
379 |
+
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
|
380 |
+
load_model_as_complete(text_encoder_2, target_device=gpu)
|
381 |
+
|
382 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
383 |
+
|
384 |
+
if cfg == 1:
|
385 |
+
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
386 |
+
else:
|
387 |
+
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
388 |
+
|
389 |
+
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
390 |
+
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
391 |
+
|
392 |
+
# 20250506 pftq: Processing input video instead of image
|
393 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
|
394 |
+
|
395 |
+
# 20250506 pftq: Encode video
|
396 |
+
start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels, end_of_input_video_latent, end_of_input_video_image_np = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)
|
397 |
+
|
398 |
+
#Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
399 |
+
|
400 |
+
# CLIP Vision
|
401 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
402 |
+
|
403 |
+
if not high_vram:
|
404 |
+
load_model_as_complete(image_encoder, target_device=gpu)
|
405 |
+
|
406 |
+
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
407 |
+
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
408 |
+
start_embedding = image_encoder_last_hidden_state
|
409 |
+
|
410 |
+
end_of_input_video_output = hf_clip_vision_encode(end_of_input_video_image_np, feature_extractor, image_encoder)
|
411 |
+
end_of_input_video_last_hidden_state = end_of_input_video_output.last_hidden_state
|
412 |
+
end_of_input_video_embedding = end_of_input_video_last_hidden_state
|
413 |
+
|
414 |
+
# 20250507 pftq: Process end frame if provided
|
415 |
+
end_latent = None
|
416 |
+
end_clip_embedding = None
|
417 |
+
if end_frame is not None:
|
418 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'End frame encoding ...'))))
|
419 |
+
end_latent, end_clip_embedding, _ = image_encode(
|
420 |
+
end_frame, target_width=width, target_height=height, vae=vae,
|
421 |
+
image_encoder=image_encoder, feature_extractor=feature_extractor, device=gpu
|
422 |
+
)
|
423 |
+
|
424 |
+
# Dtype
|
425 |
+
llama_vec = llama_vec.to(transformer.dtype)
|
426 |
+
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
427 |
+
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
428 |
+
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
429 |
+
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
430 |
+
end_of_input_video_embedding = end_of_input_video_embedding.to(transformer.dtype)
|
431 |
+
|
432 |
+
# 20250509 pftq: Restored original placement of total_latent_sections after video_encode
|
433 |
+
total_latent_sections = (total_second_length * fps) / (latent_window_size * 4)
|
434 |
+
total_latent_sections = int(max(round(total_latent_sections), 1))
|
435 |
+
|
436 |
+
for idx in range(batch):
|
437 |
+
if idx > 0:
|
438 |
+
seed = seed + 1
|
439 |
+
|
440 |
+
if batch > 1:
|
441 |
+
print(f"Beginning video {idx+1} of {batch} with seed {seed} ")
|
442 |
+
|
443 |
+
job_id = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+f"_framepack-videoinput-endframe_{width}-{total_second_length}sec_seed-{seed}_steps-{steps}_distilled-{gs}_cfg-{cfg}"
|
444 |
+
|
445 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
446 |
+
|
447 |
+
rnd = torch.Generator("cpu").manual_seed(seed)
|
448 |
+
|
449 |
+
history_latents = video_latents.cpu()
|
450 |
+
history_pixels = None
|
451 |
+
total_generated_latent_frames = 0
|
452 |
+
previous_video = None
|
453 |
+
|
454 |
+
|
455 |
+
# 20250509 Generate backwards with end frame for better end frame anchoring
|
456 |
+
latent_paddings = list(reversed(range(total_latent_sections)))
|
457 |
+
if total_latent_sections > 4:
|
458 |
+
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
|
459 |
+
|
460 |
+
for section_index, latent_padding in enumerate(latent_paddings):
|
461 |
+
is_start_of_video = latent_padding == 0
|
462 |
+
is_end_of_video = latent_padding == latent_paddings[0]
|
463 |
+
latent_padding_size = latent_padding * latent_window_size
|
464 |
+
|
465 |
+
if stream.input_queue.top() == 'end':
|
466 |
+
stream.output_queue.push(('end', None))
|
467 |
+
return
|
468 |
+
|
469 |
+
if not high_vram:
|
470 |
+
unload_complete_models()
|
471 |
+
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
472 |
+
|
473 |
+
if use_teacache:
|
474 |
+
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
475 |
+
else:
|
476 |
+
transformer.initialize_teacache(enable_teacache=False)
|
477 |
+
|
478 |
+
def callback(d):
|
479 |
+
try:
|
480 |
+
preview = d['denoised']
|
481 |
+
preview = vae_decode_fake(preview)
|
482 |
+
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
483 |
+
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
484 |
+
if stream.input_queue.top() == 'end':
|
485 |
+
stream.output_queue.push(('end', None))
|
486 |
+
raise KeyboardInterrupt('User ends the task.')
|
487 |
+
current_step = d['i'] + 1
|
488 |
+
percentage = int(100.0 * current_step / steps)
|
489 |
+
hint = f'Sampling {current_step}/{steps}'
|
490 |
+
desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / fps) :.2f} seconds (FPS-{fps}), Seed: {seed}, Video {idx+1} of {batch}. Generating part {total_latent_sections - section_index} of {total_latent_sections} backward...'
|
491 |
+
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
492 |
+
except ConnectionResetError as e:
|
493 |
+
print(f"Suppressed ConnectionResetError in callback: {e}")
|
494 |
+
return
|
495 |
+
|
496 |
+
# 20250509 pftq: Dynamic frame allocation like original num_clean_frames, fix split error
|
497 |
+
available_frames = video_latents.shape[2] if is_start_of_video else history_latents.shape[2]
|
498 |
+
effective_clean_frames = max(0, num_clean_frames - 1) if num_clean_frames > 1 else 1
|
499 |
+
if is_start_of_video:
|
500 |
+
effective_clean_frames = 1 # avoid jumpcuts from input video
|
501 |
+
clean_latent_pre_frames = effective_clean_frames
|
502 |
+
num_2x_frames = min(2, max(1, available_frames - clean_latent_pre_frames - 1)) if available_frames > clean_latent_pre_frames + 1 else 1
|
503 |
+
num_4x_frames = min(16, max(1, available_frames - clean_latent_pre_frames - num_2x_frames)) if available_frames > clean_latent_pre_frames + num_2x_frames else 1
|
504 |
+
total_context_frames = num_2x_frames + num_4x_frames
|
505 |
+
total_context_frames = min(total_context_frames, available_frames - clean_latent_pre_frames)
|
506 |
+
|
507 |
+
# 20250511 pftq: Dynamically adjust post_frames based on clean_latents_post
|
508 |
+
post_frames = 1 if is_end_of_video and end_latent is not None else effective_clean_frames # 20250511 pftq: Single frame for end_latent, otherwise padding causes still image
|
509 |
+
indices = torch.arange(0, clean_latent_pre_frames + latent_padding_size + latent_window_size + post_frames + num_2x_frames + num_4x_frames).unsqueeze(0)
|
510 |
+
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split(
|
511 |
+
[clean_latent_pre_frames, latent_padding_size, latent_window_size, post_frames, num_2x_frames, num_4x_frames], dim=1
|
512 |
+
)
|
513 |
+
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
|
514 |
+
|
515 |
+
# 20250509 pftq: Split context frames dynamically for 2x and 4x only
|
516 |
+
context_frames = history_latents[:, :, -(total_context_frames + clean_latent_pre_frames):-clean_latent_pre_frames, :, :] if total_context_frames > 0 else history_latents[:, :, :1, :, :]
|
517 |
+
split_sizes = [num_4x_frames, num_2x_frames]
|
518 |
+
split_sizes = [s for s in split_sizes if s > 0]
|
519 |
+
if split_sizes and context_frames.shape[2] >= sum(split_sizes):
|
520 |
+
splits = context_frames.split(split_sizes, dim=2)
|
521 |
+
split_idx = 0
|
522 |
+
clean_latents_4x = splits[split_idx] if num_4x_frames > 0 else history_latents[:, :, :1, :, :]
|
523 |
+
split_idx += 1 if num_4x_frames > 0 else 0
|
524 |
+
clean_latents_2x = splits[split_idx] if num_2x_frames > 0 and split_idx < len(splits) else history_latents[:, :, :1, :, :]
|
525 |
+
else:
|
526 |
+
clean_latents_4x = clean_latents_2x = history_latents[:, :, :1, :, :]
|
527 |
+
|
528 |
+
clean_latents_pre = video_latents[:, :, -min(effective_clean_frames, video_latents.shape[2]):].to(history_latents) # smoother motion but jumpcuts if end frame is too different, must change clean_latent_pre_frames to effective_clean_frames also
|
529 |
+
clean_latents_post = history_latents[:, :, :min(effective_clean_frames, history_latents.shape[2]), :, :] # smoother motion, must change post_frames to effective_clean_frames also
|
530 |
+
|
531 |
+
if is_end_of_video:
|
532 |
+
clean_latents_post = torch.zeros_like(end_of_input_video_latent).to(history_latents)
|
533 |
+
|
534 |
+
# 20250509 pftq: handle end frame if available
|
535 |
+
if end_latent is not None:
|
536 |
+
#current_end_frame_weight = end_frame_weight * (latent_padding / latent_paddings[0])
|
537 |
+
#current_end_frame_weight = current_end_frame_weight * 0.5 + 0.5
|
538 |
+
current_end_frame_weight = end_frame_weight # changing this over time introduces discontinuity
|
539 |
+
# 20250511 pftq: Removed end frame weight adjustment as it has no effect
|
540 |
+
image_encoder_last_hidden_state = (1 - current_end_frame_weight) * end_of_input_video_embedding + end_clip_embedding * current_end_frame_weight
|
541 |
+
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
542 |
+
|
543 |
+
# 20250511 pftq: Use end_latent only
|
544 |
+
if is_end_of_video:
|
545 |
+
clean_latents_post = end_latent.to(history_latents)[:, :, :1, :, :] # Ensure single frame
|
546 |
+
|
547 |
+
# 20250511 pftq: Pad clean_latents_pre to match clean_latent_pre_frames if needed
|
548 |
+
if clean_latents_pre.shape[2] < clean_latent_pre_frames:
|
549 |
+
clean_latents_pre = clean_latents_pre.repeat(1, 1, clean_latent_pre_frames // clean_latents_pre.shape[2], 1, 1)
|
550 |
+
# 20250511 pftq: Pad clean_latents_post to match post_frames if needed
|
551 |
+
if clean_latents_post.shape[2] < post_frames:
|
552 |
+
clean_latents_post = clean_latents_post.repeat(1, 1, post_frames // clean_latents_post.shape[2], 1, 1)
|
553 |
+
|
554 |
+
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
|
555 |
+
|
556 |
+
max_frames = min(latent_window_size * 4 - 3, history_latents.shape[2] * 4)
|
557 |
+
print(f"Generating video {idx+1} of {batch} with seed {seed}, part {total_latent_sections - section_index} of {total_latent_sections} backward")
|
558 |
+
generated_latents = sample_hunyuan(
|
559 |
+
transformer=transformer,
|
560 |
+
sampler='unipc',
|
561 |
+
width=width,
|
562 |
+
height=height,
|
563 |
+
frames=max_frames,
|
564 |
+
real_guidance_scale=cfg,
|
565 |
+
distilled_guidance_scale=gs,
|
566 |
+
guidance_rescale=rs,
|
567 |
+
num_inference_steps=steps,
|
568 |
+
generator=rnd,
|
569 |
+
prompt_embeds=llama_vec,
|
570 |
+
prompt_embeds_mask=llama_attention_mask,
|
571 |
+
prompt_poolers=clip_l_pooler,
|
572 |
+
negative_prompt_embeds=llama_vec_n,
|
573 |
+
negative_prompt_embeds_mask=llama_attention_mask_n,
|
574 |
+
negative_prompt_poolers=clip_l_pooler_n,
|
575 |
+
device=gpu,
|
576 |
+
dtype=torch.bfloat16,
|
577 |
+
image_embeddings=image_encoder_last_hidden_state,
|
578 |
+
latent_indices=latent_indices,
|
579 |
+
clean_latents=clean_latents,
|
580 |
+
clean_latent_indices=clean_latent_indices,
|
581 |
+
clean_latents_2x=clean_latents_2x,
|
582 |
+
clean_latent_2x_indices=clean_latent_2x_indices,
|
583 |
+
clean_latents_4x=clean_latents_4x,
|
584 |
+
clean_latent_4x_indices=clean_latent_4x_indices,
|
585 |
+
callback=callback,
|
586 |
+
)
|
587 |
+
|
588 |
+
if is_start_of_video:
|
589 |
+
generated_latents = torch.cat([video_latents[:, :, -1:].to(generated_latents), generated_latents], dim=2)
|
590 |
+
|
591 |
+
total_generated_latent_frames += int(generated_latents.shape[2])
|
592 |
+
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
|
593 |
+
|
594 |
+
if not high_vram:
|
595 |
+
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
596 |
+
load_model_as_complete(vae, target_device=gpu)
|
597 |
+
|
598 |
+
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
|
599 |
+
if history_pixels is None:
|
600 |
+
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
601 |
+
else:
|
602 |
+
section_latent_frames = (latent_window_size * 2 + 1) if is_start_of_video else (latent_window_size * 2)
|
603 |
+
overlapped_frames = latent_window_size * 4 - 3
|
604 |
+
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
|
605 |
+
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
|
606 |
+
|
607 |
+
if not high_vram:
|
608 |
+
unload_complete_models()
|
609 |
+
|
610 |
+
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
611 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
|
612 |
+
print(f"Latest video saved: {output_filename}")
|
613 |
+
set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}")
|
614 |
+
print(f"Prompt saved to mp4 metadata comments: {output_filename}")
|
615 |
+
|
616 |
+
if previous_video is not None and os.path.exists(previous_video):
|
617 |
+
try:
|
618 |
+
os.remove(previous_video)
|
619 |
+
print(f"Previous partial video deleted: {previous_video}")
|
620 |
+
except Exception as e:
|
621 |
+
print(f"Error deleting previous partial video {previous_video}: {e}")
|
622 |
+
previous_video = output_filename
|
623 |
+
|
624 |
+
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
625 |
+
stream.output_queue.push(('file', output_filename))
|
626 |
+
|
627 |
+
if is_start_of_video:
|
628 |
+
break
|
629 |
+
|
630 |
+
history_pixels = torch.cat([input_video_pixels, history_pixels], dim=2)
|
631 |
+
#overlapped_frames = latent_window_size * 4 - 3
|
632 |
+
#history_pixels = soft_append_bcthw(input_video_pixels, history_pixels, overlapped_frames)
|
633 |
+
|
634 |
+
output_filename = os.path.join(outputs_folder, f'{job_id}_final.mp4')
|
635 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
|
636 |
+
print(f"Final video with input blend saved: {output_filename}")
|
637 |
+
set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}")
|
638 |
+
print(f"Prompt saved to mp4 metadata comments: {output_filename}")
|
639 |
+
stream.output_queue.push(('file', output_filename))
|
640 |
+
|
641 |
+
if previous_video is not None and os.path.exists(previous_video):
|
642 |
+
try:
|
643 |
+
os.remove(previous_video)
|
644 |
+
print(f"Previous partial video deleted: {previous_video}")
|
645 |
+
except Exception as e:
|
646 |
+
print(f"Error deleting previous partial video {previous_video}: {e}")
|
647 |
+
previous_video = output_filename
|
648 |
+
|
649 |
+
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
650 |
+
|
651 |
+
stream.output_queue.push(('file', output_filename))
|
652 |
+
|
653 |
+
except:
|
654 |
+
traceback.print_exc()
|
655 |
+
|
656 |
+
if not high_vram:
|
657 |
+
unload_complete_models(
|
658 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
659 |
+
)
|
660 |
+
|
661 |
+
stream.output_queue.push(('end', None))
|
662 |
+
return
|
663 |
+
|
664 |
+
# 20250506 pftq: Modified process to pass clean frame count, etc
|
665 |
+
def get_duration(input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
666 |
+
return total_second_length * 60
|
667 |
+
|
668 |
+
@spaces.GPU(duration=get_duration)
|
669 |
+
def process(input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
670 |
+
global stream, high_vram
|
671 |
+
# 20250506 pftq: Updated assertion for video input
|
672 |
+
assert input_video is not None, 'No input video!'
|
673 |
+
|
674 |
+
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
675 |
+
|
676 |
+
# 20250507 pftq: Even the H100 needs offloading if the video dimensions are 720p or higher
|
677 |
+
if high_vram and (no_resize or resolution>640):
|
678 |
+
print("Disabling high vram mode due to no resize and/or potentially higher resolution...")
|
679 |
+
high_vram = False
|
680 |
+
vae.enable_slicing()
|
681 |
+
vae.enable_tiling()
|
682 |
+
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
683 |
+
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
684 |
+
|
685 |
+
# 20250508 pftq: automatically set distilled cfg to 1 if cfg is used
|
686 |
+
if cfg > 1:
|
687 |
+
gs = 1
|
688 |
+
|
689 |
+
stream = AsyncStream()
|
690 |
+
|
691 |
+
# 20250506 pftq: Pass num_clean_frames, vae_batch, etc
|
692 |
+
async_run(worker, input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch)
|
693 |
+
|
694 |
+
output_filename = None
|
695 |
+
|
696 |
+
while True:
|
697 |
+
flag, data = stream.output_queue.next()
|
698 |
+
|
699 |
+
if flag == 'file':
|
700 |
+
output_filename = data
|
701 |
+
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
|
702 |
+
|
703 |
+
if flag == 'progress':
|
704 |
+
preview, desc, html = data
|
705 |
+
#yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
706 |
+
yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background
|
707 |
+
|
708 |
+
if flag == 'end':
|
709 |
+
yield output_filename, gr.update(visible=False), desc+' Video complete.', '', gr.update(interactive=True), gr.update(interactive=False)
|
710 |
+
break
|
711 |
+
|
712 |
+
def end_process():
|
713 |
+
stream.input_queue.push('end')
|
714 |
+
|
715 |
+
quick_prompts = [
|
716 |
+
'The girl dances gracefully, with clear movements, full of charm.',
|
717 |
+
'A character doing some simple body movements.',
|
718 |
+
]
|
719 |
+
quick_prompts = [[x] for x in quick_prompts]
|
720 |
+
|
721 |
+
css = make_progress_bar_css()
|
722 |
+
block = gr.Blocks(css=css).queue(
|
723 |
+
max_size=10 # 20250507 pftq: Limit queue size
|
724 |
+
)
|
725 |
+
with block:
|
726 |
+
# 20250506 pftq: Updated title to reflect video input functionality
|
727 |
+
gr.Markdown('# Framepack with Video Input (Video Extension) + End Frame')
|
728 |
+
with gr.Row():
|
729 |
+
with gr.Column():
|
730 |
+
|
731 |
+
# 20250506 pftq: Changed to Video input from Image
|
732 |
+
with gr.Row():
|
733 |
+
input_video = gr.Video(sources='upload', label="Input Video", height=320)
|
734 |
+
with gr.Column():
|
735 |
+
# 20250507 pftq: Added end_frame + weight
|
736 |
+
end_frame = gr.Image(sources='upload', type="numpy", label="End Frame (Optional) - Reduce context frames if very different from input video or if it is jumpcutting/slowing to still image.", height=320)
|
737 |
+
end_frame_weight = gr.Slider(label="End Frame Weight", minimum=0.0, maximum=1.0, value=1.0, step=0.01, info='Reduce to treat more as a reference image.', visible=False) # no effect
|
738 |
+
|
739 |
+
prompt = gr.Textbox(label="Prompt", value='')
|
740 |
+
#example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
|
741 |
+
#example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
|
742 |
+
|
743 |
+
with gr.Row():
|
744 |
+
start_button = gr.Button(value="Start Generation")
|
745 |
+
end_button = gr.Button(value="End Generation", interactive=False)
|
746 |
+
|
747 |
+
with gr.Group():
|
748 |
+
with gr.Row():
|
749 |
+
use_teacache = gr.Checkbox(label='Use TeaCache', value=False, info='Faster speed, but often makes hands and fingers slightly worse.')
|
750 |
+
no_resize = gr.Checkbox(label='Force Original Video Resolution (No Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).')
|
751 |
+
|
752 |
+
seed = gr.Number(label="Seed", value=31337, precision=0)
|
753 |
+
|
754 |
+
batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.')
|
755 |
+
|
756 |
+
resolution = gr.Number(label="Resolution (max width or height)", value=640, precision=0, visible=False)
|
757 |
+
|
758 |
+
total_second_length = gr.Slider(label="Additional Video Length to Generate (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
|
759 |
+
|
760 |
+
# 20250506 pftq: Reduced default distilled guidance scale to improve adherence to input video
|
761 |
+
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=3.0, step=0.01, info='Prompt adherence at the cost of less details from the input video, but to a lesser extent than Context Frames.')
|
762 |
+
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=True, info='Use instead of Distilled for more detail/control + Negative Prompt (make sure Distilled=1). Doubles render time.') # Should not change
|
763 |
+
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
|
764 |
+
|
765 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=True, info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).')
|
766 |
+
|
767 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Expensive. Increase for more quality, especially if using high non-distilled CFG.')
|
768 |
+
|
769 |
+
# 20250506 pftq: Renamed slider to Number of Context Frames and updated description
|
770 |
+
num_clean_frames = gr.Slider(label="Number of Context Frames (Adherence to Video)", minimum=2, maximum=10, value=5, step=1, info="Expensive. Retain more video details. Reduce if memory issues or motion too restricted (jumpcut, ignoring prompt, still).")
|
771 |
+
|
772 |
+
default_vae = 32
|
773 |
+
if high_vram:
|
774 |
+
default_vae = 128
|
775 |
+
elif free_mem_gb>=20:
|
776 |
+
default_vae = 64
|
777 |
+
|
778 |
+
vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=256, value=default_vae, step=4, info="Expensive. Increase for better quality frames during fast motion. Reduce if running out of memory")
|
779 |
+
|
780 |
+
latent_window_size = gr.Slider(label="Latent Window Size", minimum=9, maximum=49, value=9, step=1, visible=True, info='Expensive. Generate more frames at a time (larger chunks). Less degradation but higher VRAM cost.')
|
781 |
+
|
782 |
+
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
|
783 |
+
|
784 |
+
mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
|
785 |
+
|
786 |
+
with gr.Column():
|
787 |
+
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
|
788 |
+
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
|
789 |
+
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
790 |
+
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
791 |
+
|
792 |
+
gr.HTML("""
|
793 |
+
<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>
|
794 |
+
""")
|
795 |
+
|
796 |
+
# 20250506 pftq: Updated inputs to include num_clean_frames
|
797 |
+
ips = [input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
|
798 |
+
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
|
799 |
+
end_button.click(fn=end_process)
|
800 |
+
|
801 |
+
|
802 |
+
block.launch(share=True)
|