LPX55 commited on
Commit
c45457d
·
verified ·
1 Parent(s): b49f31e

Create app_endframe.py

Browse files
Files changed (1) hide show
  1. app_endframe.py +802 -0
app_endframe.py ADDED
@@ -0,0 +1,802 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers_helper.hf_login import login
2
+
3
+ import os
4
+
5
+ os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
6
+
7
+ import gradio as gr
8
+ import torch
9
+ import traceback
10
+ import einops
11
+ import safetensors.torch as sf
12
+ import numpy as np
13
+ import argparse
14
+ import math
15
+ # 20250506 pftq: Added for video input loading
16
+ import decord
17
+ # 20250506 pftq: Added for progress bars in video_encode
18
+ from tqdm import tqdm
19
+ # 20250506 pftq: Normalize file paths for Windows compatibility
20
+ import pathlib
21
+ # 20250506 pftq: for easier to read timestamp
22
+ from datetime import datetime
23
+ # 20250508 pftq: for saving prompt to mp4 comments metadata
24
+ import imageio_ffmpeg
25
+ import tempfile
26
+ import shutil
27
+ import subprocess
28
+ import spaces
29
+ from PIL import Image
30
+ from diffusers import AutoencoderKLHunyuanVideo
31
+ from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
32
+ from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
33
+ from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
34
+ from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
35
+ from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
36
+ from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
37
+ from diffusers_helper.thread_utils import AsyncStream, async_run
38
+ from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
39
+ from transformers import SiglipImageProcessor, SiglipVisionModel
40
+ from diffusers_helper.clip_vision import hf_clip_vision_encode
41
+ from diffusers_helper.bucket_tools import find_nearest_bucket
42
+
43
+ parser = argparse.ArgumentParser()
44
+ parser.add_argument('--share', action='store_true')
45
+ parser.add_argument("--server", type=str, default='0.0.0.0')
46
+ parser.add_argument("--port", type=int, required=False)
47
+ parser.add_argument("--inbrowser", action='store_true')
48
+ args = parser.parse_args()
49
+
50
+ print(args)
51
+
52
+ free_mem_gb = get_cuda_free_memory_gb(gpu)
53
+ high_vram = free_mem_gb > 60
54
+
55
+ print(f'Free VRAM {free_mem_gb} GB')
56
+ print(f'High-VRAM Mode: {high_vram}')
57
+
58
+ text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
59
+ text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
60
+ tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
61
+ tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
62
+ vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
63
+
64
+ feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
65
+ image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
66
+
67
+ transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()
68
+
69
+ vae.eval()
70
+ text_encoder.eval()
71
+ text_encoder_2.eval()
72
+ image_encoder.eval()
73
+ transformer.eval()
74
+
75
+ if not high_vram:
76
+ vae.enable_slicing()
77
+ vae.enable_tiling()
78
+
79
+ transformer.high_quality_fp32_output_for_inference = True
80
+ print('transformer.high_quality_fp32_output_for_inference = True')
81
+
82
+ transformer.to(dtype=torch.bfloat16)
83
+ vae.to(dtype=torch.float16)
84
+ image_encoder.to(dtype=torch.float16)
85
+ text_encoder.to(dtype=torch.float16)
86
+ text_encoder_2.to(dtype=torch.float16)
87
+
88
+ vae.requires_grad_(False)
89
+ text_encoder.requires_grad_(False)
90
+ text_encoder_2.requires_grad_(False)
91
+ image_encoder.requires_grad_(False)
92
+ transformer.requires_grad_(False)
93
+
94
+ if not high_vram:
95
+ # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
96
+ DynamicSwapInstaller.install_model(transformer, device=gpu)
97
+ DynamicSwapInstaller.install_model(text_encoder, device=gpu)
98
+ else:
99
+ text_encoder.to(gpu)
100
+ text_encoder_2.to(gpu)
101
+ image_encoder.to(gpu)
102
+ vae.to(gpu)
103
+ transformer.to(gpu)
104
+
105
+ stream = AsyncStream()
106
+
107
+ outputs_folder = './outputs/'
108
+ os.makedirs(outputs_folder, exist_ok=True)
109
+
110
+ # 20250506 pftq: Added function to encode input video frames into latents
111
+ @torch.no_grad()
112
+ def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=16, device="cuda", width=None, height=None):
113
+ """
114
+ Encode a video into latent representations using the VAE.
115
+
116
+ Args:
117
+ video_path: Path to the input video file.
118
+ vae: AutoencoderKLHunyuanVideo model.
119
+ height, width: Target resolution for resizing frames.
120
+ vae_batch_size: Number of frames to process per batch.
121
+ device: Device for computation (e.g., "cuda").
122
+
123
+ Returns:
124
+ start_latent: Latent of the first frame (for compatibility with original code).
125
+ input_image_np: First frame as numpy array (for CLIP vision encoding).
126
+ history_latents: Latents of all frames (shape: [1, channels, frames, height//8, width//8]).
127
+ fps: Frames per second of the input video.
128
+ """
129
+ # 20250506 pftq: Normalize video path for Windows compatibility
130
+ video_path = str(pathlib.Path(video_path).resolve())
131
+ print(f"Processing video: {video_path}")
132
+
133
+ # 20250506 pftq: Check CUDA availability and fallback to CPU if needed
134
+ if device == "cuda" and not torch.cuda.is_available():
135
+ print("CUDA is not available, falling back to CPU")
136
+ device = "cpu"
137
+
138
+ try:
139
+ # 20250506 pftq: Load video and get FPS
140
+ print("Initializing VideoReader...")
141
+ vr = decord.VideoReader(video_path)
142
+ fps = vr.get_avg_fps() # Get input video FPS
143
+ num_real_frames = len(vr)
144
+ print(f"Video loaded: {num_real_frames} frames, FPS: {fps}")
145
+
146
+ # Truncate to nearest latent size (multiple of 4)
147
+ latent_size_factor = 4
148
+ num_frames = (num_real_frames // latent_size_factor) * latent_size_factor
149
+ if num_frames != num_real_frames:
150
+ print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility")
151
+ num_real_frames = num_frames
152
+
153
+ # 20250506 pftq: Read frames
154
+ print("Reading video frames...")
155
+ frames = vr.get_batch(range(num_real_frames)).asnumpy() # Shape: (num_real_frames, height, width, channels)
156
+ print(f"Frames read: {frames.shape}")
157
+
158
+ # 20250506 pftq: Get native video resolution
159
+ native_height, native_width = frames.shape[1], frames.shape[2]
160
+ print(f"Native video resolution: {native_width}x{native_height}")
161
+
162
+ # 20250506 pftq: Use native resolution if height/width not specified, otherwise use provided values
163
+ target_height = native_height if height is None else height
164
+ target_width = native_width if width is None else width
165
+
166
+ # 20250506 pftq: Adjust to nearest bucket for model compatibility
167
+ if not no_resize:
168
+ target_height, target_width = find_nearest_bucket(target_height, target_width, resolution=resolution)
169
+ print(f"Adjusted resolution: {target_width}x{target_height}")
170
+ else:
171
+ print(f"Using native resolution without resizing: {target_width}x{target_height}")
172
+
173
+ # 20250506 pftq: Preprocess frames to match original image processing
174
+ processed_frames = []
175
+ for i, frame in enumerate(frames):
176
+ #print(f"Preprocessing frame {i+1}/{num_frames}")
177
+ frame_np = resize_and_center_crop(frame, target_width=target_width, target_height=target_height)
178
+ processed_frames.append(frame_np)
179
+ processed_frames = np.stack(processed_frames) # Shape: (num_real_frames, height, width, channels)
180
+ print(f"Frames preprocessed: {processed_frames.shape}")
181
+
182
+ # 20250506 pftq: Save first frame for CLIP vision encoding
183
+ input_image_np = processed_frames[0]
184
+ end_of_input_video_image_np = processed_frames[-1]
185
+
186
+ # 20250506 pftq: Convert to tensor and normalize to [-1, 1]
187
+ print("Converting frames to tensor...")
188
+ frames_pt = torch.from_numpy(processed_frames).float() / 127.5 - 1
189
+ frames_pt = frames_pt.permute(0, 3, 1, 2) # Shape: (num_real_frames, channels, height, width)
190
+ frames_pt = frames_pt.unsqueeze(0) # Shape: (1, num_real_frames, channels, height, width)
191
+ frames_pt = frames_pt.permute(0, 2, 1, 3, 4) # Shape: (1, channels, num_real_frames, height, width)
192
+ print(f"Tensor shape: {frames_pt.shape}")
193
+
194
+ # 20250507 pftq: Save pixel frames for use in worker
195
+ input_video_pixels = frames_pt.cpu()
196
+
197
+ # 20250506 pftq: Move to device
198
+ print(f"Moving tensor to device: {device}")
199
+ frames_pt = frames_pt.to(device)
200
+ print("Tensor moved to device")
201
+
202
+ # 20250506 pftq: Move VAE to device
203
+ print(f"Moving VAE to device: {device}")
204
+ vae.to(device)
205
+ print("VAE moved to device")
206
+
207
+ # 20250506 pftq: Encode frames in batches
208
+ print(f"Encoding input video frames in VAE batch size {vae_batch_size} (reduce if memory issues here or if forcing video resolution)")
209
+ latents = []
210
+ vae.eval()
211
+ with torch.no_grad():
212
+ for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="Encoding video frames", mininterval=0.1):
213
+ #print(f"Encoding batch {i//vae_batch_size + 1}: frames {i} to {min(i + vae_batch_size, frames_pt.shape[2])}")
214
+ batch = frames_pt[:, :, i:i + vae_batch_size] # Shape: (1, channels, batch_size, height, width)
215
+ try:
216
+ # 20250506 pftq: Log GPU memory before encoding
217
+ if device == "cuda":
218
+ free_mem = torch.cuda.memory_allocated() / 1024**3
219
+ #print(f"GPU memory before encoding: {free_mem:.2f} GB")
220
+ batch_latent = vae_encode(batch, vae)
221
+ # 20250506 pftq: Synchronize CUDA to catch issues
222
+ if device == "cuda":
223
+ torch.cuda.synchronize()
224
+ #print(f"GPU memory after encoding: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
225
+ latents.append(batch_latent)
226
+ #print(f"Batch encoded, latent shape: {batch_latent.shape}")
227
+ except RuntimeError as e:
228
+ print(f"Error during VAE encoding: {str(e)}")
229
+ if device == "cuda" and "out of memory" in str(e).lower():
230
+ print("CUDA out of memory, try reducing vae_batch_size or using CPU")
231
+ raise
232
+
233
+ # 20250506 pftq: Concatenate latents
234
+ print("Concatenating latents...")
235
+ history_latents = torch.cat(latents, dim=2) # Shape: (1, channels, frames, height//8, width//8)
236
+ print(f"History latents shape: {history_latents.shape}")
237
+
238
+ # 20250506 pftq: Get first frame's latent
239
+ start_latent = history_latents[:, :, :1] # Shape: (1, channels, 1, height//8, width//8)
240
+ end_of_input_video_latent = history_latents[:, :, -1:] # Shape: (1, channels, 1, height//8, width//8)
241
+ print(f"Start latent shape: {start_latent.shape}")
242
+
243
+ # 20250506 pftq: Move VAE back to CPU to free GPU memory
244
+ if device == "cuda":
245
+ vae.to(cpu)
246
+ torch.cuda.empty_cache()
247
+ print("VAE moved back to CPU, CUDA cache cleared")
248
+
249
+ return start_latent, input_image_np, history_latents, fps, target_height, target_width, input_video_pixels, end_of_input_video_latent, end_of_input_video_image_np
250
+
251
+ except Exception as e:
252
+ print(f"Error in video_encode: {str(e)}")
253
+ raise
254
+
255
+
256
+ # 20250507 pftq: New function to encode a single image (end frame)
257
+ @torch.no_grad()
258
+ def image_encode(image_np, target_width, target_height, vae, image_encoder, feature_extractor, device="cuda"):
259
+ """
260
+ Encode a single image into a latent and compute its CLIP vision embedding.
261
+
262
+ Args:
263
+ image_np: Input image as numpy array.
264
+ target_width, target_height: Exact resolution to resize the image to (matches start frame).
265
+ vae: AutoencoderKLHunyuanVideo model.
266
+ image_encoder: SiglipVisionModel for CLIP vision encoding.
267
+ feature_extractor: SiglipImageProcessor for preprocessing.
268
+ device: Device for computation (e.g., "cuda").
269
+
270
+ Returns:
271
+ latent: Latent representation of the image (shape: [1, channels, 1, height//8, width//8]).
272
+ clip_embedding: CLIP vision embedding of the image.
273
+ processed_image_np: Processed image as numpy array (after resizing).
274
+ """
275
+ # 20250507 pftq: Process end frame with exact start frame dimensions
276
+ print("Processing end frame...")
277
+ try:
278
+ print(f"Using exact start frame resolution for end frame: {target_width}x{target_height}")
279
+
280
+ # Resize and preprocess image to match start frame
281
+ processed_image_np = resize_and_center_crop(image_np, target_width=target_width, target_height=target_height)
282
+
283
+ # Convert to tensor and normalize
284
+ image_pt = torch.from_numpy(processed_image_np).float() / 127.5 - 1
285
+ image_pt = image_pt.permute(2, 0, 1).unsqueeze(0).unsqueeze(2) # Shape: [1, channels, 1, height, width]
286
+ image_pt = image_pt.to(device)
287
+
288
+ # Move VAE to device
289
+ vae.to(device)
290
+
291
+ # Encode to latent
292
+ latent = vae_encode(image_pt, vae)
293
+ print(f"image_encode vae output shape: {latent.shape}")
294
+
295
+ # Move image encoder to device
296
+ image_encoder.to(device)
297
+
298
+ # Compute CLIP vision embedding
299
+ clip_embedding = hf_clip_vision_encode(processed_image_np, feature_extractor, image_encoder).last_hidden_state
300
+
301
+ # Move models back to CPU and clear cache
302
+ if device == "cuda":
303
+ vae.to(cpu)
304
+ image_encoder.to(cpu)
305
+ torch.cuda.empty_cache()
306
+ print("VAE and image encoder moved back to CPU, CUDA cache cleared")
307
+
308
+ print(f"End latent shape: {latent.shape}")
309
+ return latent, clip_embedding, processed_image_np
310
+
311
+ except Exception as e:
312
+ print(f"Error in image_encode: {str(e)}")
313
+ raise
314
+
315
+ # 20250508 pftq: for saving prompt to mp4 metadata comments
316
+ def set_mp4_comments_imageio_ffmpeg(input_file, comments):
317
+ try:
318
+ # Get the path to the bundled FFmpeg binary from imageio-ffmpeg
319
+ ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
320
+
321
+ # Check if input file exists
322
+ if not os.path.exists(input_file):
323
+ print(f"Error: Input file {input_file} does not exist")
324
+ return False
325
+
326
+ # Create a temporary file path
327
+ temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
328
+
329
+ # FFmpeg command using the bundled binary
330
+ command = [
331
+ ffmpeg_path, # Use imageio-ffmpeg's FFmpeg
332
+ '-i', input_file, # input file
333
+ '-metadata', f'comment={comments}', # set comment metadata
334
+ '-c:v', 'copy', # copy video stream without re-encoding
335
+ '-c:a', 'copy', # copy audio stream without re-encoding
336
+ '-y', # overwrite output file if it exists
337
+ temp_file # temporary output file
338
+ ]
339
+
340
+ # Run the FFmpeg command
341
+ result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
342
+
343
+ if result.returncode == 0:
344
+ # Replace the original file with the modified one
345
+ shutil.move(temp_file, input_file)
346
+ print(f"Successfully added comments to {input_file}")
347
+ return True
348
+ else:
349
+ # Clean up temp file if FFmpeg fails
350
+ if os.path.exists(temp_file):
351
+ os.remove(temp_file)
352
+ print(f"Error: FFmpeg failed with message:\n{result.stderr}")
353
+ return False
354
+
355
+ except Exception as e:
356
+ # Clean up temp file in case of other errors
357
+ if 'temp_file' in locals() and os.path.exists(temp_file):
358
+ os.remove(temp_file)
359
+ print(f"Error saving prompt to video metadata, ffmpeg may be required: "+str(e))
360
+ return False
361
+
362
+ # 20250506 pftq: Modified worker to accept video input, and clean frame count
363
+ @torch.no_grad()
364
+ def worker(input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
365
+
366
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
367
+
368
+ try:
369
+ # Clean GPU
370
+ if not high_vram:
371
+ unload_complete_models(
372
+ text_encoder, text_encoder_2, image_encoder, vae, transformer
373
+ )
374
+
375
+ # Text encoding
376
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
377
+
378
+ if not high_vram:
379
+ fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
380
+ load_model_as_complete(text_encoder_2, target_device=gpu)
381
+
382
+ llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
383
+
384
+ if cfg == 1:
385
+ llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
386
+ else:
387
+ llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
388
+
389
+ llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
390
+ llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
391
+
392
+ # 20250506 pftq: Processing input video instead of image
393
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
394
+
395
+ # 20250506 pftq: Encode video
396
+ start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels, end_of_input_video_latent, end_of_input_video_image_np = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)
397
+
398
+ #Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
399
+
400
+ # CLIP Vision
401
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
402
+
403
+ if not high_vram:
404
+ load_model_as_complete(image_encoder, target_device=gpu)
405
+
406
+ image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
407
+ image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
408
+ start_embedding = image_encoder_last_hidden_state
409
+
410
+ end_of_input_video_output = hf_clip_vision_encode(end_of_input_video_image_np, feature_extractor, image_encoder)
411
+ end_of_input_video_last_hidden_state = end_of_input_video_output.last_hidden_state
412
+ end_of_input_video_embedding = end_of_input_video_last_hidden_state
413
+
414
+ # 20250507 pftq: Process end frame if provided
415
+ end_latent = None
416
+ end_clip_embedding = None
417
+ if end_frame is not None:
418
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'End frame encoding ...'))))
419
+ end_latent, end_clip_embedding, _ = image_encode(
420
+ end_frame, target_width=width, target_height=height, vae=vae,
421
+ image_encoder=image_encoder, feature_extractor=feature_extractor, device=gpu
422
+ )
423
+
424
+ # Dtype
425
+ llama_vec = llama_vec.to(transformer.dtype)
426
+ llama_vec_n = llama_vec_n.to(transformer.dtype)
427
+ clip_l_pooler = clip_l_pooler.to(transformer.dtype)
428
+ clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
429
+ image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
430
+ end_of_input_video_embedding = end_of_input_video_embedding.to(transformer.dtype)
431
+
432
+ # 20250509 pftq: Restored original placement of total_latent_sections after video_encode
433
+ total_latent_sections = (total_second_length * fps) / (latent_window_size * 4)
434
+ total_latent_sections = int(max(round(total_latent_sections), 1))
435
+
436
+ for idx in range(batch):
437
+ if idx > 0:
438
+ seed = seed + 1
439
+
440
+ if batch > 1:
441
+ print(f"Beginning video {idx+1} of {batch} with seed {seed} ")
442
+
443
+ job_id = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+f"_framepack-videoinput-endframe_{width}-{total_second_length}sec_seed-{seed}_steps-{steps}_distilled-{gs}_cfg-{cfg}"
444
+
445
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
446
+
447
+ rnd = torch.Generator("cpu").manual_seed(seed)
448
+
449
+ history_latents = video_latents.cpu()
450
+ history_pixels = None
451
+ total_generated_latent_frames = 0
452
+ previous_video = None
453
+
454
+
455
+ # 20250509 Generate backwards with end frame for better end frame anchoring
456
+ latent_paddings = list(reversed(range(total_latent_sections)))
457
+ if total_latent_sections > 4:
458
+ latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
459
+
460
+ for section_index, latent_padding in enumerate(latent_paddings):
461
+ is_start_of_video = latent_padding == 0
462
+ is_end_of_video = latent_padding == latent_paddings[0]
463
+ latent_padding_size = latent_padding * latent_window_size
464
+
465
+ if stream.input_queue.top() == 'end':
466
+ stream.output_queue.push(('end', None))
467
+ return
468
+
469
+ if not high_vram:
470
+ unload_complete_models()
471
+ move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
472
+
473
+ if use_teacache:
474
+ transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
475
+ else:
476
+ transformer.initialize_teacache(enable_teacache=False)
477
+
478
+ def callback(d):
479
+ try:
480
+ preview = d['denoised']
481
+ preview = vae_decode_fake(preview)
482
+ preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
483
+ preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
484
+ if stream.input_queue.top() == 'end':
485
+ stream.output_queue.push(('end', None))
486
+ raise KeyboardInterrupt('User ends the task.')
487
+ current_step = d['i'] + 1
488
+ percentage = int(100.0 * current_step / steps)
489
+ hint = f'Sampling {current_step}/{steps}'
490
+ desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / fps) :.2f} seconds (FPS-{fps}), Seed: {seed}, Video {idx+1} of {batch}. Generating part {total_latent_sections - section_index} of {total_latent_sections} backward...'
491
+ stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
492
+ except ConnectionResetError as e:
493
+ print(f"Suppressed ConnectionResetError in callback: {e}")
494
+ return
495
+
496
+ # 20250509 pftq: Dynamic frame allocation like original num_clean_frames, fix split error
497
+ available_frames = video_latents.shape[2] if is_start_of_video else history_latents.shape[2]
498
+ effective_clean_frames = max(0, num_clean_frames - 1) if num_clean_frames > 1 else 1
499
+ if is_start_of_video:
500
+ effective_clean_frames = 1 # avoid jumpcuts from input video
501
+ clean_latent_pre_frames = effective_clean_frames
502
+ num_2x_frames = min(2, max(1, available_frames - clean_latent_pre_frames - 1)) if available_frames > clean_latent_pre_frames + 1 else 1
503
+ num_4x_frames = min(16, max(1, available_frames - clean_latent_pre_frames - num_2x_frames)) if available_frames > clean_latent_pre_frames + num_2x_frames else 1
504
+ total_context_frames = num_2x_frames + num_4x_frames
505
+ total_context_frames = min(total_context_frames, available_frames - clean_latent_pre_frames)
506
+
507
+ # 20250511 pftq: Dynamically adjust post_frames based on clean_latents_post
508
+ post_frames = 1 if is_end_of_video and end_latent is not None else effective_clean_frames # 20250511 pftq: Single frame for end_latent, otherwise padding causes still image
509
+ indices = torch.arange(0, clean_latent_pre_frames + latent_padding_size + latent_window_size + post_frames + num_2x_frames + num_4x_frames).unsqueeze(0)
510
+ clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split(
511
+ [clean_latent_pre_frames, latent_padding_size, latent_window_size, post_frames, num_2x_frames, num_4x_frames], dim=1
512
+ )
513
+ clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
514
+
515
+ # 20250509 pftq: Split context frames dynamically for 2x and 4x only
516
+ context_frames = history_latents[:, :, -(total_context_frames + clean_latent_pre_frames):-clean_latent_pre_frames, :, :] if total_context_frames > 0 else history_latents[:, :, :1, :, :]
517
+ split_sizes = [num_4x_frames, num_2x_frames]
518
+ split_sizes = [s for s in split_sizes if s > 0]
519
+ if split_sizes and context_frames.shape[2] >= sum(split_sizes):
520
+ splits = context_frames.split(split_sizes, dim=2)
521
+ split_idx = 0
522
+ clean_latents_4x = splits[split_idx] if num_4x_frames > 0 else history_latents[:, :, :1, :, :]
523
+ split_idx += 1 if num_4x_frames > 0 else 0
524
+ clean_latents_2x = splits[split_idx] if num_2x_frames > 0 and split_idx < len(splits) else history_latents[:, :, :1, :, :]
525
+ else:
526
+ clean_latents_4x = clean_latents_2x = history_latents[:, :, :1, :, :]
527
+
528
+ clean_latents_pre = video_latents[:, :, -min(effective_clean_frames, video_latents.shape[2]):].to(history_latents) # smoother motion but jumpcuts if end frame is too different, must change clean_latent_pre_frames to effective_clean_frames also
529
+ clean_latents_post = history_latents[:, :, :min(effective_clean_frames, history_latents.shape[2]), :, :] # smoother motion, must change post_frames to effective_clean_frames also
530
+
531
+ if is_end_of_video:
532
+ clean_latents_post = torch.zeros_like(end_of_input_video_latent).to(history_latents)
533
+
534
+ # 20250509 pftq: handle end frame if available
535
+ if end_latent is not None:
536
+ #current_end_frame_weight = end_frame_weight * (latent_padding / latent_paddings[0])
537
+ #current_end_frame_weight = current_end_frame_weight * 0.5 + 0.5
538
+ current_end_frame_weight = end_frame_weight # changing this over time introduces discontinuity
539
+ # 20250511 pftq: Removed end frame weight adjustment as it has no effect
540
+ image_encoder_last_hidden_state = (1 - current_end_frame_weight) * end_of_input_video_embedding + end_clip_embedding * current_end_frame_weight
541
+ image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
542
+
543
+ # 20250511 pftq: Use end_latent only
544
+ if is_end_of_video:
545
+ clean_latents_post = end_latent.to(history_latents)[:, :, :1, :, :] # Ensure single frame
546
+
547
+ # 20250511 pftq: Pad clean_latents_pre to match clean_latent_pre_frames if needed
548
+ if clean_latents_pre.shape[2] < clean_latent_pre_frames:
549
+ clean_latents_pre = clean_latents_pre.repeat(1, 1, clean_latent_pre_frames // clean_latents_pre.shape[2], 1, 1)
550
+ # 20250511 pftq: Pad clean_latents_post to match post_frames if needed
551
+ if clean_latents_post.shape[2] < post_frames:
552
+ clean_latents_post = clean_latents_post.repeat(1, 1, post_frames // clean_latents_post.shape[2], 1, 1)
553
+
554
+ clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
555
+
556
+ max_frames = min(latent_window_size * 4 - 3, history_latents.shape[2] * 4)
557
+ print(f"Generating video {idx+1} of {batch} with seed {seed}, part {total_latent_sections - section_index} of {total_latent_sections} backward")
558
+ generated_latents = sample_hunyuan(
559
+ transformer=transformer,
560
+ sampler='unipc',
561
+ width=width,
562
+ height=height,
563
+ frames=max_frames,
564
+ real_guidance_scale=cfg,
565
+ distilled_guidance_scale=gs,
566
+ guidance_rescale=rs,
567
+ num_inference_steps=steps,
568
+ generator=rnd,
569
+ prompt_embeds=llama_vec,
570
+ prompt_embeds_mask=llama_attention_mask,
571
+ prompt_poolers=clip_l_pooler,
572
+ negative_prompt_embeds=llama_vec_n,
573
+ negative_prompt_embeds_mask=llama_attention_mask_n,
574
+ negative_prompt_poolers=clip_l_pooler_n,
575
+ device=gpu,
576
+ dtype=torch.bfloat16,
577
+ image_embeddings=image_encoder_last_hidden_state,
578
+ latent_indices=latent_indices,
579
+ clean_latents=clean_latents,
580
+ clean_latent_indices=clean_latent_indices,
581
+ clean_latents_2x=clean_latents_2x,
582
+ clean_latent_2x_indices=clean_latent_2x_indices,
583
+ clean_latents_4x=clean_latents_4x,
584
+ clean_latent_4x_indices=clean_latent_4x_indices,
585
+ callback=callback,
586
+ )
587
+
588
+ if is_start_of_video:
589
+ generated_latents = torch.cat([video_latents[:, :, -1:].to(generated_latents), generated_latents], dim=2)
590
+
591
+ total_generated_latent_frames += int(generated_latents.shape[2])
592
+ history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
593
+
594
+ if not high_vram:
595
+ offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
596
+ load_model_as_complete(vae, target_device=gpu)
597
+
598
+ real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
599
+ if history_pixels is None:
600
+ history_pixels = vae_decode(real_history_latents, vae).cpu()
601
+ else:
602
+ section_latent_frames = (latent_window_size * 2 + 1) if is_start_of_video else (latent_window_size * 2)
603
+ overlapped_frames = latent_window_size * 4 - 3
604
+ current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
605
+ history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
606
+
607
+ if not high_vram:
608
+ unload_complete_models()
609
+
610
+ output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
611
+ save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
612
+ print(f"Latest video saved: {output_filename}")
613
+ set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}")
614
+ print(f"Prompt saved to mp4 metadata comments: {output_filename}")
615
+
616
+ if previous_video is not None and os.path.exists(previous_video):
617
+ try:
618
+ os.remove(previous_video)
619
+ print(f"Previous partial video deleted: {previous_video}")
620
+ except Exception as e:
621
+ print(f"Error deleting previous partial video {previous_video}: {e}")
622
+ previous_video = output_filename
623
+
624
+ print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
625
+ stream.output_queue.push(('file', output_filename))
626
+
627
+ if is_start_of_video:
628
+ break
629
+
630
+ history_pixels = torch.cat([input_video_pixels, history_pixels], dim=2)
631
+ #overlapped_frames = latent_window_size * 4 - 3
632
+ #history_pixels = soft_append_bcthw(input_video_pixels, history_pixels, overlapped_frames)
633
+
634
+ output_filename = os.path.join(outputs_folder, f'{job_id}_final.mp4')
635
+ save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
636
+ print(f"Final video with input blend saved: {output_filename}")
637
+ set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}")
638
+ print(f"Prompt saved to mp4 metadata comments: {output_filename}")
639
+ stream.output_queue.push(('file', output_filename))
640
+
641
+ if previous_video is not None and os.path.exists(previous_video):
642
+ try:
643
+ os.remove(previous_video)
644
+ print(f"Previous partial video deleted: {previous_video}")
645
+ except Exception as e:
646
+ print(f"Error deleting previous partial video {previous_video}: {e}")
647
+ previous_video = output_filename
648
+
649
+ print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
650
+
651
+ stream.output_queue.push(('file', output_filename))
652
+
653
+ except:
654
+ traceback.print_exc()
655
+
656
+ if not high_vram:
657
+ unload_complete_models(
658
+ text_encoder, text_encoder_2, image_encoder, vae, transformer
659
+ )
660
+
661
+ stream.output_queue.push(('end', None))
662
+ return
663
+
664
+ # 20250506 pftq: Modified process to pass clean frame count, etc
665
+ def get_duration(input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
666
+ return total_second_length * 60
667
+
668
+ @spaces.GPU(duration=get_duration)
669
+ def process(input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
670
+ global stream, high_vram
671
+ # 20250506 pftq: Updated assertion for video input
672
+ assert input_video is not None, 'No input video!'
673
+
674
+ yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
675
+
676
+ # 20250507 pftq: Even the H100 needs offloading if the video dimensions are 720p or higher
677
+ if high_vram and (no_resize or resolution>640):
678
+ print("Disabling high vram mode due to no resize and/or potentially higher resolution...")
679
+ high_vram = False
680
+ vae.enable_slicing()
681
+ vae.enable_tiling()
682
+ DynamicSwapInstaller.install_model(transformer, device=gpu)
683
+ DynamicSwapInstaller.install_model(text_encoder, device=gpu)
684
+
685
+ # 20250508 pftq: automatically set distilled cfg to 1 if cfg is used
686
+ if cfg > 1:
687
+ gs = 1
688
+
689
+ stream = AsyncStream()
690
+
691
+ # 20250506 pftq: Pass num_clean_frames, vae_batch, etc
692
+ async_run(worker, input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch)
693
+
694
+ output_filename = None
695
+
696
+ while True:
697
+ flag, data = stream.output_queue.next()
698
+
699
+ if flag == 'file':
700
+ output_filename = data
701
+ yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
702
+
703
+ if flag == 'progress':
704
+ preview, desc, html = data
705
+ #yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
706
+ yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background
707
+
708
+ if flag == 'end':
709
+ yield output_filename, gr.update(visible=False), desc+' Video complete.', '', gr.update(interactive=True), gr.update(interactive=False)
710
+ break
711
+
712
+ def end_process():
713
+ stream.input_queue.push('end')
714
+
715
+ quick_prompts = [
716
+ 'The girl dances gracefully, with clear movements, full of charm.',
717
+ 'A character doing some simple body movements.',
718
+ ]
719
+ quick_prompts = [[x] for x in quick_prompts]
720
+
721
+ css = make_progress_bar_css()
722
+ block = gr.Blocks(css=css).queue(
723
+ max_size=10 # 20250507 pftq: Limit queue size
724
+ )
725
+ with block:
726
+ # 20250506 pftq: Updated title to reflect video input functionality
727
+ gr.Markdown('# Framepack with Video Input (Video Extension) + End Frame')
728
+ with gr.Row():
729
+ with gr.Column():
730
+
731
+ # 20250506 pftq: Changed to Video input from Image
732
+ with gr.Row():
733
+ input_video = gr.Video(sources='upload', label="Input Video", height=320)
734
+ with gr.Column():
735
+ # 20250507 pftq: Added end_frame + weight
736
+ end_frame = gr.Image(sources='upload', type="numpy", label="End Frame (Optional) - Reduce context frames if very different from input video or if it is jumpcutting/slowing to still image.", height=320)
737
+ end_frame_weight = gr.Slider(label="End Frame Weight", minimum=0.0, maximum=1.0, value=1.0, step=0.01, info='Reduce to treat more as a reference image.', visible=False) # no effect
738
+
739
+ prompt = gr.Textbox(label="Prompt", value='')
740
+ #example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
741
+ #example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
742
+
743
+ with gr.Row():
744
+ start_button = gr.Button(value="Start Generation")
745
+ end_button = gr.Button(value="End Generation", interactive=False)
746
+
747
+ with gr.Group():
748
+ with gr.Row():
749
+ use_teacache = gr.Checkbox(label='Use TeaCache', value=False, info='Faster speed, but often makes hands and fingers slightly worse.')
750
+ no_resize = gr.Checkbox(label='Force Original Video Resolution (No Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).')
751
+
752
+ seed = gr.Number(label="Seed", value=31337, precision=0)
753
+
754
+ batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.')
755
+
756
+ resolution = gr.Number(label="Resolution (max width or height)", value=640, precision=0, visible=False)
757
+
758
+ total_second_length = gr.Slider(label="Additional Video Length to Generate (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
759
+
760
+ # 20250506 pftq: Reduced default distilled guidance scale to improve adherence to input video
761
+ gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=3.0, step=0.01, info='Prompt adherence at the cost of less details from the input video, but to a lesser extent than Context Frames.')
762
+ cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=True, info='Use instead of Distilled for more detail/control + Negative Prompt (make sure Distilled=1). Doubles render time.') # Should not change
763
+ rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
764
+
765
+ n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=True, info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).')
766
+
767
+ steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Expensive. Increase for more quality, especially if using high non-distilled CFG.')
768
+
769
+ # 20250506 pftq: Renamed slider to Number of Context Frames and updated description
770
+ num_clean_frames = gr.Slider(label="Number of Context Frames (Adherence to Video)", minimum=2, maximum=10, value=5, step=1, info="Expensive. Retain more video details. Reduce if memory issues or motion too restricted (jumpcut, ignoring prompt, still).")
771
+
772
+ default_vae = 32
773
+ if high_vram:
774
+ default_vae = 128
775
+ elif free_mem_gb>=20:
776
+ default_vae = 64
777
+
778
+ vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=256, value=default_vae, step=4, info="Expensive. Increase for better quality frames during fast motion. Reduce if running out of memory")
779
+
780
+ latent_window_size = gr.Slider(label="Latent Window Size", minimum=9, maximum=49, value=9, step=1, visible=True, info='Expensive. Generate more frames at a time (larger chunks). Less degradation but higher VRAM cost.')
781
+
782
+ gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
783
+
784
+ mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
785
+
786
+ with gr.Column():
787
+ preview_image = gr.Image(label="Next Latents", height=200, visible=False)
788
+ result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
789
+ progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
790
+ progress_bar = gr.HTML('', elem_classes='no-generating-animation')
791
+
792
+ gr.HTML("""
793
+ <div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>
794
+ """)
795
+
796
+ # 20250506 pftq: Updated inputs to include num_clean_frames
797
+ ips = [input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
798
+ start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
799
+ end_button.click(fn=end_process)
800
+
801
+
802
+ block.launch(share=True)