FramePack-Multi_AIO / app_v2v.py
LPX55's picture
Update app_v2v.py
f16c010 verified
from diffusers_helper.hf_login import login
import os
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
import spaces
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import argparse
import math
import decord
from tqdm import tqdm
import pathlib
from datetime import datetime
import imageio_ffmpeg
import tempfile
import shutil
import subprocess
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, HunyuanVideoTransformer3DModel, HunyuanVideoPipeline
parser = argparse.ArgumentParser()
parser.add_argument('--share', action='store_true')
parser.add_argument("--server", type=str, default='0.0.0.0')
parser.add_argument("--port", type=int, required=False)
parser.add_argument("--inbrowser", action='store_true')
args = parser.parse_args()
print(args)
free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = free_mem_gb > 80
print(f'Free VRAM {free_mem_gb} GB')
print(f'High-VRAM Mode: {high_vram}')
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
"lllyasviel/FramePack_F1_I2V_HY_20250503",
quantization_config=quant_config,
torch_dtype=torch.bfloat16,
).cpu()
# transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()
if not high_vram:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = False
print('transformer.high_quality_fp32_output_for_inference = F')
# transformer.to(dtype=torch.bfloat16)
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)
if not high_vram:
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
text_encoder.to(gpu)
text_encoder_2.to(gpu)
image_encoder.to(gpu)
vae.to(gpu)
# transformer.to(gpu)
stream = AsyncStream()
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
@spaces.GPU()
@torch.no_grad()
def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=16, device="cuda", width=None, height=None):
"""
Encode a video into latent representations using the VAE.
Args:
video_path: Path to the input video file.
vae: AutoencoderKLHunyuanVideo model.
height, width: Target resolution for resizing frames.
vae_batch_size: Number of frames to process per batch.
device: Device for computation (e.g., "cuda").
Returns:
start_latent: Latent of the first frame (for compatibility with original code).
input_image_np: First frame as numpy array (for CLIP vision encoding).
history_latents: Latents of all frames (shape: [1, channels, frames, height//8, width//8]).
fps: Frames per second of the input video.
"""
video_path = str(pathlib.Path(video_path).resolve())
print(f"Processing video: {video_path}")
if device == "cuda" and not torch.cuda.is_available():
print("CUDA is not available, falling back to CPU")
device = "cpu"
try:
print("Initializing VideoReader...")
vr = decord.VideoReader(video_path)
fps = vr.get_avg_fps() # Get input video FPS
num_real_frames = len(vr)
print(f"Video loaded: {num_real_frames} frames, FPS: {fps}")
# Truncate to nearest latent size (multiple of 4)
latent_size_factor = 4
num_frames = (num_real_frames // latent_size_factor) * latent_size_factor
if num_frames != num_real_frames:
print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility")
num_real_frames = num_frames
print("Reading video frames...")
frames = vr.get_batch(range(num_real_frames)).asnumpy() # Shape: (num_real_frames, height, width, channels)
print(f"Frames read: {frames.shape}")
native_height, native_width = frames.shape[1], frames.shape[2]
print(f"Native video resolution: {native_width}x{native_height}")
target_height = native_height if height is None else height
target_width = native_width if width is None else width
if not no_resize:
target_height, target_width = find_nearest_bucket(target_height, target_width, resolution=resolution)
print(f"Adjusted resolution: {target_width}x{target_height}")
else:
print(f"Using native resolution without resizing: {target_width}x{target_height}")
processed_frames = []
for i, frame in enumerate(frames):
#print(f"Preprocessing frame {i+1}/{num_frames}")
frame_np = resize_and_center_crop(frame, target_width=target_width, target_height=target_height)
processed_frames.append(frame_np)
processed_frames = np.stack(processed_frames) # Shape: (num_real_frames, height, width, channels)
print(f"Frames preprocessed: {processed_frames.shape}")
input_image_np = processed_frames[0]
print("Converting frames to tensor...")
frames_pt = torch.from_numpy(processed_frames).float() / 127.5 - 1
frames_pt = frames_pt.permute(0, 3, 1, 2) # Shape: (num_real_frames, channels, height, width)
frames_pt = frames_pt.unsqueeze(0) # Shape: (1, num_real_frames, channels, height, width)
frames_pt = frames_pt.permute(0, 2, 1, 3, 4) # Shape: (1, channels, num_real_frames, height, width)
print(f"Tensor shape: {frames_pt.shape}")
input_video_pixels = frames_pt.cpu()
print(f"Moving tensor to device: {device}")
frames_pt = frames_pt.to(device)
print("Tensor moved to device")
print(f"Moving VAE to device: {device}")
vae.to(device)
print("VAE moved to device")
print(f"Encoding input video frames in VAE batch size {vae_batch_size} (reduce if memory issues here or if forcing video resolution)")
latents = []
vae.eval()
with torch.no_grad():
for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="Encoding video frames", mininterval=0.1):
#print(f"Encoding batch {i//vae_batch_size + 1}: frames {i} to {min(i + vae_batch_size, frames_pt.shape[2])}")
batch = frames_pt[:, :, i:i + vae_batch_size] # Shape: (1, channels, batch_size, height, width)
try:
if device == "cuda":
free_mem = torch.cuda.memory_allocated() / 1024**3
print(f"GPU memory before encoding: {free_mem:.2f} GB")
batch_latent = vae_encode(batch, vae)
if device == "cuda":
torch.cuda.synchronize()
print(f"GPU memory after encoding: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
latents.append(batch_latent)
#print(f"Batch encoded, latent shape: {batch_latent.shape}")
except RuntimeError as e:
print(f"Error during VAE encoding: {str(e)}")
if device == "cuda" and "out of memory" in str(e).lower():
print("CUDA out of memory, try reducing vae_batch_size or using CPU")
raise
print("Concatenating latents...")
history_latents = torch.cat(latents, dim=2) # Shape: (1, channels, frames, height//8, width//8)
print(f"History latents shape: {history_latents.shape}")
start_latent = history_latents[:, :, :1] # Shape: (1, channels, 1, height//8, width//8)
print(f"Start latent shape: {start_latent.shape}")
if device == "cuda":
vae.to(cpu)
torch.cuda.empty_cache()
print("VAE moved back to CPU, CUDA cache cleared")
return start_latent, input_image_np, history_latents, fps, target_height, target_width, input_video_pixels
except Exception as e:
print(f"Error in video_encode: {str(e)}")
raise
def set_mp4_comments_imageio_ffmpeg(input_file, comments):
try:
ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
if not os.path.exists(input_file):
print(f"Error: Input file {input_file} does not exist")
return False
# Create a temporary file path
temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
# FFmpeg command using the bundled binary
command = [
ffmpeg_path, # Use imageio-ffmpeg's FFmpeg
'-i', input_file, # input file
'-metadata', f'comment={comments}', # set comment metadata
'-c:v', 'copy', # copy video stream without re-encoding
'-c:a', 'copy', # copy audio stream without re-encoding
'-y', # overwrite output file if it exists
temp_file # temporary output file
]
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode == 0:
# Replace the original file with the modified one
shutil.move(temp_file, input_file)
print(f"Successfully added comments to {input_file}")
return True
else:
# Clean up temp file if FFmpeg fails
if os.path.exists(temp_file):
os.remove(temp_file)
print(f"Error: FFmpeg failed with message:\n{result.stderr}")
return False
except Exception as e:
# Clean up temp file in case of other errors
if 'temp_file' in locals() and os.path.exists(temp_file):
os.remove(temp_file)
print(f"Error saving prompt to video metadata, ffmpeg may be required: "+str(e))
return False
@torch.no_grad()
def worker(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae
)
# Text encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
if not high_vram:
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
load_model_as_complete(text_encoder_2, target_device=gpu)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
# 20250506 pftq: Processing input video instead of image
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
# 20250506 pftq: Encode video
#H, W = 640, 640 # Default resolution, will be adjusted
#height, width = find_nearest_bucket(H, W, resolution=640)
#start_latent, input_image_np, history_latents, fps = video_encode(input_video, vae, height, width, vae_batch_size=16, device=gpu)
start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)
#Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
# CLIP Vision
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
if not high_vram:
load_model_as_complete(image_encoder, target_device=gpu)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
# Dtype
llama_vec = llama_vec.to(transformer.dtype)
llama_vec_n = llama_vec_n.to(transformer.dtype)
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
total_latent_sections = (total_second_length * fps) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
for idx in range(batch):
if idx>0:
seed = seed + 1
if batch > 1:
print(f"Beginning video {idx+1} of {batch} with seed {seed} ")
#job_id = generate_timestamp()
job_id = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+f"_framepackf1-videoinput_{width}-{total_second_length}sec_seed-{seed}_steps-{steps}_distilled-{gs}_cfg-{cfg}" # 20250506 pftq: easier to read timestamp and filename
# Sampling
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
history_latents = video_latents.cpu()
total_generated_latent_frames = history_latents.shape[2]
history_pixels = None
previous_video = None
# 20250507 pftq: hot fix for initial video being corrupted by vae encoding, issue with ghosting because of slight differences
#history_pixels = input_video_pixels
#save_bcthw_as_mp4(vae_decode(video_latents, vae).cpu(), os.path.join(outputs_folder, f'{job_id}_input_video.mp4'), fps=fps, crf=mp4_crf) # 20250507 pftq: test fast movement corrupted by vae encoding if vae batch size too low
for section_index in range(total_latent_sections):
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
return
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
if not high_vram:
unload_complete_models()
# move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
if use_teacache:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
preview = d['denoised']
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
raise KeyboardInterrupt('User ends the task.')
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
hint = f'Sampling {current_step}/{steps}'
desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / fps) :.2f} seconds (FPS-{fps}), Seed: {seed}, Video {idx+1} of {batch}. The video is generating part {section_index+1} of {total_latent_sections}...'
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
return
# 20250506 pftq: Use user-specified number of context frames, matching original allocation for num_clean_frames=2
available_frames = history_latents.shape[2] # Number of latent frames
max_pixel_frames = min(latent_window_size * 4 - 3, available_frames * 4) # Cap at available pixel frames
adjusted_latent_frames = max(1, (max_pixel_frames + 3) // 4) # Convert back to latent frames
# Adjust num_clean_frames to match original behavior: num_clean_frames=2 means 1 frame for clean_latents_1x
effective_clean_frames = max(0, num_clean_frames - 1) if num_clean_frames > 1 else 0
effective_clean_frames = min(effective_clean_frames, available_frames - 2) if available_frames > 2 else 0 # 20250507 pftq: changed 1 to 2 for edge case for <=1 sec videos
num_2x_frames = min(2, max(1, available_frames - effective_clean_frames - 1)) if available_frames > effective_clean_frames + 1 else 0 # 20250507 pftq: subtracted 1 for edge case for <=1 sec videos
num_4x_frames = min(16, max(1, available_frames - effective_clean_frames - num_2x_frames)) if available_frames > effective_clean_frames + num_2x_frames else 0 # 20250507 pftq: Edge case for <=1 sec
total_context_frames = num_4x_frames + num_2x_frames + effective_clean_frames
total_context_frames = min(total_context_frames, available_frames) # 20250507 pftq: Edge case for <=1 sec videos
indices = torch.arange(0, sum([1, num_4x_frames, num_2x_frames, effective_clean_frames, adjusted_latent_frames])).unsqueeze(0) # 20250507 pftq: latent_window_size to adjusted_latent_frames for edge case for <=1 sec videos
clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split(
[1, num_4x_frames, num_2x_frames, effective_clean_frames, adjusted_latent_frames], dim=1 # 20250507 pftq: latent_window_size to adjusted_latent_frames for edge case for <=1 sec videos
)
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
# 20250506 pftq: Split history_latents dynamically based on available frames
fallback_frame_count = 2 # 20250507 pftq: Changed 0 to 2 Edge case for <=1 sec videos
context_frames = history_latents[:, :, -total_context_frames:, :, :] if total_context_frames > 0 else history_latents[:, :, :fallback_frame_count, :, :]
if total_context_frames > 0:
split_sizes = [num_4x_frames, num_2x_frames, effective_clean_frames]
split_sizes = [s for s in split_sizes if s > 0] # Remove zero sizes
if split_sizes:
splits = context_frames.split(split_sizes, dim=2)
split_idx = 0
clean_latents_4x = splits[split_idx] if num_4x_frames > 0 else history_latents[:, :, :fallback_frame_count, :, :]
if clean_latents_4x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos
clean_latents_4x = torch.cat([clean_latents_4x, clean_latents_4x[:, :, -1:, :, :]], dim=2)[:, :, :2, :, :]
split_idx += 1 if num_4x_frames > 0 else 0
clean_latents_2x = splits[split_idx] if num_2x_frames > 0 and split_idx < len(splits) else history_latents[:, :, :fallback_frame_count, :, :]
if clean_latents_2x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos
clean_latents_2x = torch.cat([clean_latents_2x, clean_latents_2x[:, :, -1:, :, :]], dim=2)[:, :, :2, :, :]
split_idx += 1 if num_2x_frames > 0 else 0
clean_latents_1x = splits[split_idx] if effective_clean_frames > 0 and split_idx < len(splits) else history_latents[:, :, :fallback_frame_count, :, :]
else:
clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :fallback_frame_count, :, :]
else:
clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :fallback_frame_count, :, :]
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
# 20250507 pftq: Fix for <=1 sec videos.
max_frames = min(latent_window_size * 4 - 3, history_latents.shape[2] * 4)
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=width,
height=height,
frames=max_frames,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=gpu,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
if not high_vram:
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=gpu)
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = latent_window_size * 2
overlapped_frames = min(latent_window_size * 4 - 3, history_pixels.shape[2])
#if section_index == 0:
#extra_latents = 1 # Add up to 2 extra latent frames for smoother overlap to initial video
#extra_pixel_frames = extra_latents * 4 # Approx. 4 pixel frames per latent
#overlapped_frames = min(overlapped_frames + extra_pixel_frames, history_pixels.shape[2], section_latent_frames * 4)
current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
if not high_vram:
unload_complete_models()
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
# 20250506 pftq: Use input video FPS for output
save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
print(f"Latest video saved: {output_filename}")
# 20250508 pftq: Save prompt to mp4 metadata comments
set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}");
print(f"Prompt saved to mp4 metadata comments: {output_filename}")
# 20250506 pftq: Clean up previous partial files
if previous_video is not None and os.path.exists(previous_video):
try:
os.remove(previous_video)
print(f"Previous partial video deleted: {previous_video}")
except Exception as e:
print(f"Error deleting previous partial video {previous_video}: {e}")
previous_video = output_filename
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
stream.output_queue.push(('file', output_filename))
except:
traceback.print_exc()
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae
)
stream.output_queue.push(('end', None))
return
@spaces.GPU(duration=90)
def process(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
global stream, high_vram
# 20250506 pftq: Updated assertion for video input
assert input_video is not None, 'No input video!'
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
# 20250507 pftq: Even the H100 needs offloading if the video dimensions are 720p or higher
if high_vram and (no_resize or resolution>640):
print("Disabling high vram mode due to no resize and/or potentially higher resolution...")
high_vram = False
vae.enable_slicing()
vae.enable_tiling()
DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
# 20250508 pftq: automatically set distilled cfg to 1 if cfg is used
if cfg > 1:
gs = 1
stream = AsyncStream()
# 20250506 pftq: Pass num_clean_frames, vae_batch, etc
async_run(worker, input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch)
output_filename = None
while True:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
if flag == 'progress':
preview, desc, html = data
#yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background
if flag == 'end':
yield output_filename, gr.update(visible=False), desc+' Video complete.', '', gr.update(interactive=True), gr.update(interactive=False)
break
def end_process():
stream.input_queue.push('end')
quick_prompts = [
'The girl dances gracefully, with clear movements, full of charm.',
'A character doing some simple body movements.',
]
quick_prompts = [[x] for x in quick_prompts]
css = make_progress_bar_css()
block = gr.Blocks(css=css).queue()
with block:
gr.Markdown('# Framepack F1 (Video Extender)')
with gr.Row():
with gr.Column():
# 20250506 pftq: Changed to Video input from Image
input_video = gr.Video(sources='upload', label="Input Video", height=320)
prompt = gr.Textbox(label="Prompt", value='')
#example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
#example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
with gr.Row():
start_button = gr.Button(value="Start Generation")
end_button = gr.Button(value="End Generation", interactive=False)
with gr.Group():
with gr.Row():
use_teacache = gr.Checkbox(label='Use TeaCache', value=False, info='Faster speed, but often makes hands and fingers slightly worse.')
no_resize = gr.Checkbox(label='Force Original Video Resolution (No Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).')
seed = gr.Number(label="Seed", value=31337, precision=0)
batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.')
resolution = gr.Number(label="Resolution (max width or height)", value=640, precision=0, visible=False)
total_second_length = gr.Slider(label="Additional Video Length to Generate (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=3.0, step=0.01, info='Prompt adherence at the cost of less details from the input video, but to a lesser extent than Context Frames.')
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=True, info='Use this instead of Distilled for more detail/control + Negative Prompt (make sure Distilled set to 1). Doubles render time.') # Should not change
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=True, info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).')
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Increase for more quality, especially if using high non-distilled CFG.')
num_clean_frames = gr.Slider(label="Number of Context Frames", minimum=2, maximum=10, value=5, step=1, info="Retain more video details but increase memory use. Reduce to 2 if memory issues.")
default_vae = 32
if high_vram:
default_vae = 128
elif free_mem_gb>=20:
default_vae = 64
vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=256, value=default_vae, step=4, info="Reduce if running out of memory. Increase for better quality frames during fast motion.")
latent_window_size = gr.Slider(label="Latent Window Size", minimum=9, maximum=33, value=9, step=1, visible=True, info='Generate more frames at a time (larger chunks). Less degradation and better blending but higher VRAM cost.')
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
with gr.Column():
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
gr.HTML("""
<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>
""")
ips = [input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
end_button.click(fn=end_process)
block.launch(ssr_mode=False)