File size: 35,996 Bytes
3ad36df
 
 
 
 
0d503c8
3ad36df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bd73d1
3ad36df
 
 
 
 
 
 
 
 
 
 
f35e7c3
3ad36df
 
 
 
9bd73d1
 
3ad36df
 
 
 
 
 
 
 
 
9bd73d1
 
 
 
 
 
 
 
3ad36df
 
 
 
 
 
 
 
 
 
 
1953cee
 
3ad36df
cf746b6
3ad36df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f35e7c3
3ad36df
 
 
 
 
 
d4ee98a
3ad36df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ee98a
3ad36df
 
 
d4ee98a
3ad36df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b1c79b
3ad36df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b1c79b
3ad36df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b1c79b
3ad36df
 
 
 
0d503c8
f16c010
3ad36df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd432ce
3ad36df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df39dda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
from diffusers_helper.hf_login import login

import os

os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
import spaces
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import argparse
import math
import decord
from tqdm import tqdm
import pathlib
from datetime import datetime
import imageio_ffmpeg
import tempfile
import shutil
import subprocess

from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, HunyuanVideoTransformer3DModel, HunyuanVideoPipeline

parser = argparse.ArgumentParser()
parser.add_argument('--share', action='store_true')
parser.add_argument("--server", type=str, default='0.0.0.0')
parser.add_argument("--port", type=int, required=False)
parser.add_argument("--inbrowser", action='store_true')
args = parser.parse_args()

print(args)

free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = free_mem_gb > 80

print(f'Free VRAM {free_mem_gb} GB')
print(f'High-VRAM Mode: {high_vram}')



text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()

feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()

quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
    "lllyasviel/FramePack_F1_I2V_HY_20250503",
    quantization_config=quant_config,
    torch_dtype=torch.bfloat16,
).cpu()

# transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()

vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()

if not high_vram:
    vae.enable_slicing()
    vae.enable_tiling()

transformer.high_quality_fp32_output_for_inference = False
print('transformer.high_quality_fp32_output_for_inference = F')

# transformer.to(dtype=torch.bfloat16)
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)

vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)

if not high_vram:
    # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
    DynamicSwapInstaller.install_model(transformer, device=gpu)
    DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
    text_encoder.to(gpu)
    text_encoder_2.to(gpu)
    image_encoder.to(gpu)
    vae.to(gpu)
    # transformer.to(gpu)

stream = AsyncStream()

outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)

@spaces.GPU()
@torch.no_grad()
def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=16, device="cuda", width=None, height=None):
    """
    Encode a video into latent representations using the VAE.
    
    Args:
        video_path: Path to the input video file.
        vae: AutoencoderKLHunyuanVideo model.
        height, width: Target resolution for resizing frames.
        vae_batch_size: Number of frames to process per batch.
        device: Device for computation (e.g., "cuda").
    
    Returns:
        start_latent: Latent of the first frame (for compatibility with original code).
        input_image_np: First frame as numpy array (for CLIP vision encoding).
        history_latents: Latents of all frames (shape: [1, channels, frames, height//8, width//8]).
        fps: Frames per second of the input video.
    """
    video_path = str(pathlib.Path(video_path).resolve())
    print(f"Processing video: {video_path}")

    if device == "cuda" and not torch.cuda.is_available():
        print("CUDA is not available, falling back to CPU")
        device = "cpu"

    try:
        print("Initializing VideoReader...")
        vr = decord.VideoReader(video_path)
        fps = vr.get_avg_fps()  # Get input video FPS
        num_real_frames = len(vr)
        print(f"Video loaded: {num_real_frames} frames, FPS: {fps}")

        # Truncate to nearest latent size (multiple of 4)
        latent_size_factor = 4
        num_frames = (num_real_frames // latent_size_factor) * latent_size_factor
        if num_frames != num_real_frames:
            print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility")
        num_real_frames = num_frames

        print("Reading video frames...")
        frames = vr.get_batch(range(num_real_frames)).asnumpy()  # Shape: (num_real_frames, height, width, channels)
        print(f"Frames read: {frames.shape}")

        native_height, native_width = frames.shape[1], frames.shape[2]
        print(f"Native video resolution: {native_width}x{native_height}")
    
        target_height = native_height if height is None else height
        target_width = native_width if width is None else width
    
        if not no_resize:
            target_height, target_width = find_nearest_bucket(target_height, target_width, resolution=resolution)
            print(f"Adjusted resolution: {target_width}x{target_height}")
        else:
            print(f"Using native resolution without resizing: {target_width}x{target_height}")

        processed_frames = []
        for i, frame in enumerate(frames):
            #print(f"Preprocessing frame {i+1}/{num_frames}")
            frame_np = resize_and_center_crop(frame, target_width=target_width, target_height=target_height)
            processed_frames.append(frame_np)
        processed_frames = np.stack(processed_frames)  # Shape: (num_real_frames, height, width, channels)
        print(f"Frames preprocessed: {processed_frames.shape}")

        input_image_np = processed_frames[0]

        print("Converting frames to tensor...")
        frames_pt = torch.from_numpy(processed_frames).float() / 127.5 - 1
        frames_pt = frames_pt.permute(0, 3, 1, 2)  # Shape: (num_real_frames, channels, height, width)
        frames_pt = frames_pt.unsqueeze(0)  # Shape: (1, num_real_frames, channels, height, width)
        frames_pt = frames_pt.permute(0, 2, 1, 3, 4)  # Shape: (1, channels, num_real_frames, height, width)
        print(f"Tensor shape: {frames_pt.shape}")
        
        input_video_pixels = frames_pt.cpu()

        print(f"Moving tensor to device: {device}")
        frames_pt = frames_pt.to(device)
        print("Tensor moved to device")

        print(f"Moving VAE to device: {device}")
        vae.to(device)
        print("VAE moved to device")

        print(f"Encoding input video frames in VAE batch size {vae_batch_size} (reduce if memory issues here or if forcing video resolution)")
        latents = []
        vae.eval()
        with torch.no_grad():
            for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="Encoding video frames", mininterval=0.1):
                #print(f"Encoding batch {i//vae_batch_size + 1}: frames {i} to {min(i + vae_batch_size, frames_pt.shape[2])}")
                batch = frames_pt[:, :, i:i + vae_batch_size]  # Shape: (1, channels, batch_size, height, width)
                try:
                    if device == "cuda":
                        free_mem = torch.cuda.memory_allocated() / 1024**3
                        print(f"GPU memory before encoding: {free_mem:.2f} GB")
                    batch_latent = vae_encode(batch, vae)
                    if device == "cuda":
                        torch.cuda.synchronize()
                        print(f"GPU memory after encoding: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
                    latents.append(batch_latent)
                    #print(f"Batch encoded, latent shape: {batch_latent.shape}")
                except RuntimeError as e:
                    print(f"Error during VAE encoding: {str(e)}")
                    if device == "cuda" and "out of memory" in str(e).lower():
                        print("CUDA out of memory, try reducing vae_batch_size or using CPU")
                    raise
        
        print("Concatenating latents...")
        history_latents = torch.cat(latents, dim=2)  # Shape: (1, channels, frames, height//8, width//8)
        print(f"History latents shape: {history_latents.shape}")

        start_latent = history_latents[:, :, :1]  # Shape: (1, channels, 1, height//8, width//8)
        print(f"Start latent shape: {start_latent.shape}")

        if device == "cuda":
            vae.to(cpu)
            torch.cuda.empty_cache()
            print("VAE moved back to CPU, CUDA cache cleared")

        return start_latent, input_image_np, history_latents, fps, target_height, target_width, input_video_pixels

    except Exception as e:
        print(f"Error in video_encode: {str(e)}")
        raise

def set_mp4_comments_imageio_ffmpeg(input_file, comments):
    try:
        ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
        
        if not os.path.exists(input_file):
            print(f"Error: Input file {input_file} does not exist")
            return False
            
        # Create a temporary file path
        temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
        
        # FFmpeg command using the bundled binary
        command = [
            ffmpeg_path,                   # Use imageio-ffmpeg's FFmpeg
            '-i', input_file,              # input file
            '-metadata', f'comment={comments}',  # set comment metadata
            '-c:v', 'copy',                # copy video stream without re-encoding
            '-c:a', 'copy',                # copy audio stream without re-encoding
            '-y',                          # overwrite output file if it exists
            temp_file                      # temporary output file
        ]
        
        result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
        
        if result.returncode == 0:
            # Replace the original file with the modified one
            shutil.move(temp_file, input_file)
            print(f"Successfully added comments to {input_file}")
            return True
        else:
            # Clean up temp file if FFmpeg fails
            if os.path.exists(temp_file):
                os.remove(temp_file)
            print(f"Error: FFmpeg failed with message:\n{result.stderr}")
            return False
            
    except Exception as e:
        # Clean up temp file in case of other errors
        if 'temp_file' in locals() and os.path.exists(temp_file):
            os.remove(temp_file)
        print(f"Error saving prompt to video metadata, ffmpeg may be required: "+str(e))
        return False

@torch.no_grad()
def worker(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
    
    stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))

    try:
        if not high_vram:
            unload_complete_models(
                text_encoder, text_encoder_2, image_encoder, vae
            )

        # Text encoding
        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))

        if not high_vram:
            fake_diffusers_current_device(text_encoder, gpu)  # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
            load_model_as_complete(text_encoder_2, target_device=gpu)

        llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)

        if cfg == 1:
            llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
        else:
            llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)

        llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
        llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)

        # 20250506 pftq: Processing input video instead of image
        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))

        # 20250506 pftq: Encode video
        #H, W = 640, 640  # Default resolution, will be adjusted
        #height, width = find_nearest_bucket(H, W, resolution=640)
        #start_latent, input_image_np, history_latents, fps = video_encode(input_video, vae, height, width, vae_batch_size=16, device=gpu)
        start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels  = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)

        #Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) 

        # CLIP Vision
        stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))

        if not high_vram:
            load_model_as_complete(image_encoder, target_device=gpu)

        image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
        image_encoder_last_hidden_state = image_encoder_output.last_hidden_state

        # Dtype
        llama_vec = llama_vec.to(transformer.dtype)
        llama_vec_n = llama_vec_n.to(transformer.dtype)
        clip_l_pooler = clip_l_pooler.to(transformer.dtype)
        clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
        image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)

        total_latent_sections = (total_second_length * fps) / (latent_window_size * 4)
        total_latent_sections = int(max(round(total_latent_sections), 1))

        for idx in range(batch):
            if idx>0:
                seed = seed + 1
            
            if batch > 1:
                print(f"Beginning video {idx+1} of {batch} with seed {seed} ")
            
            #job_id = generate_timestamp()
            job_id = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+f"_framepackf1-videoinput_{width}-{total_second_length}sec_seed-{seed}_steps-{steps}_distilled-{gs}_cfg-{cfg}" # 20250506 pftq: easier to read timestamp and filename
            
            # Sampling
            stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
    
            rnd = torch.Generator("cpu").manual_seed(seed)
    
            history_latents = video_latents.cpu()
            total_generated_latent_frames = history_latents.shape[2]
            history_pixels = None
            previous_video = None
            
            # 20250507 pftq: hot fix for initial video being corrupted by vae encoding, issue with ghosting because of slight differences
            #history_pixels = input_video_pixels 
            #save_bcthw_as_mp4(vae_decode(video_latents, vae).cpu(), os.path.join(outputs_folder, f'{job_id}_input_video.mp4'), fps=fps, crf=mp4_crf) # 20250507 pftq: test fast movement corrupted by vae encoding if vae batch size too low
            
            for section_index in range(total_latent_sections):
                if stream.input_queue.top() == 'end':
                    stream.output_queue.push(('end', None))
                    return
    
                print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
    
                if not high_vram:
                    unload_complete_models()
                    # move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
    
                if use_teacache:
                    transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
                else:
                    transformer.initialize_teacache(enable_teacache=False)
    
                def callback(d):
                    preview = d['denoised']
                    preview = vae_decode_fake(preview)
    
                    preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
                    preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
    
                    if stream.input_queue.top() == 'end':
                        stream.output_queue.push(('end', None))
                        raise KeyboardInterrupt('User ends the task.')
    
                    current_step = d['i'] + 1
                    percentage = int(100.0 * current_step / steps)
                    hint = f'Sampling {current_step}/{steps}'
                    desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / fps) :.2f} seconds (FPS-{fps}), Seed: {seed}, Video {idx+1} of {batch}. The video is generating part {section_index+1} of {total_latent_sections}...'
                    stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
                    return
    
                # 20250506 pftq: Use user-specified number of context frames, matching original allocation for num_clean_frames=2
                available_frames = history_latents.shape[2]  # Number of latent frames
                max_pixel_frames = min(latent_window_size * 4 - 3, available_frames * 4)  # Cap at available pixel frames
                adjusted_latent_frames = max(1, (max_pixel_frames + 3) // 4)  # Convert back to latent frames
                # Adjust num_clean_frames to match original behavior: num_clean_frames=2 means 1 frame for clean_latents_1x
                effective_clean_frames = max(0, num_clean_frames - 1) if num_clean_frames > 1 else 0
                effective_clean_frames = min(effective_clean_frames, available_frames - 2) if available_frames > 2 else 0 # 20250507 pftq: changed 1 to 2 for edge case for <=1 sec videos
                num_2x_frames = min(2, max(1, available_frames - effective_clean_frames - 1)) if available_frames > effective_clean_frames + 1 else 0 # 20250507 pftq: subtracted 1 for edge case for <=1 sec videos
                num_4x_frames = min(16, max(1, available_frames - effective_clean_frames - num_2x_frames)) if available_frames > effective_clean_frames + num_2x_frames else 0 # 20250507 pftq: Edge case for <=1 sec
                
                total_context_frames = num_4x_frames + num_2x_frames + effective_clean_frames
                total_context_frames = min(total_context_frames, available_frames)  # 20250507 pftq: Edge case for <=1 sec videos

                indices = torch.arange(0, sum([1, num_4x_frames, num_2x_frames, effective_clean_frames, adjusted_latent_frames])).unsqueeze(0) # 20250507 pftq: latent_window_size to adjusted_latent_frames for edge case for <=1 sec videos
                clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split(
                    [1, num_4x_frames, num_2x_frames, effective_clean_frames, adjusted_latent_frames], dim=1 # 20250507 pftq: latent_window_size to adjusted_latent_frames for edge case for <=1 sec videos
                )
                clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
    
                # 20250506 pftq: Split history_latents dynamically based on available frames
                fallback_frame_count = 2 # 20250507 pftq: Changed 0 to 2 Edge case for <=1 sec videos
                context_frames = history_latents[:, :, -total_context_frames:, :, :] if total_context_frames > 0 else history_latents[:, :, :fallback_frame_count, :, :]  
                if total_context_frames > 0:
                    split_sizes = [num_4x_frames, num_2x_frames, effective_clean_frames] 
                    split_sizes = [s for s in split_sizes if s > 0]  # Remove zero sizes
                    if split_sizes:
                        splits = context_frames.split(split_sizes, dim=2)
                        split_idx = 0
                        clean_latents_4x = splits[split_idx] if num_4x_frames > 0 else history_latents[:, :, :fallback_frame_count, :, :]
                        if clean_latents_4x.shape[2] < 2:  # 20250507 pftq: edge case for <=1 sec videos
                            clean_latents_4x = torch.cat([clean_latents_4x, clean_latents_4x[:, :, -1:, :, :]], dim=2)[:, :, :2, :, :]
                        split_idx += 1 if num_4x_frames > 0 else 0
                        clean_latents_2x = splits[split_idx] if num_2x_frames > 0 and split_idx < len(splits) else history_latents[:, :, :fallback_frame_count, :, :]
                        if clean_latents_2x.shape[2] < 2:  # 20250507 pftq: edge case for <=1 sec videos
                            clean_latents_2x = torch.cat([clean_latents_2x, clean_latents_2x[:, :, -1:, :, :]], dim=2)[:, :, :2, :, :]
                        split_idx += 1 if num_2x_frames > 0 else 0
                        clean_latents_1x = splits[split_idx] if effective_clean_frames > 0 and split_idx < len(splits) else history_latents[:, :, :fallback_frame_count, :, :] 
                    else:
                        clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :fallback_frame_count, :, :] 
                else:
                    clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :fallback_frame_count, :, :] 
    
                clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)

                # 20250507 pftq: Fix for <=1 sec videos.
                max_frames = min(latent_window_size * 4 - 3, history_latents.shape[2] * 4)

                generated_latents = sample_hunyuan(
                    transformer=transformer,
                    sampler='unipc',
                    width=width,
                    height=height,
                    frames=max_frames,
                    real_guidance_scale=cfg,
                    distilled_guidance_scale=gs,
                    guidance_rescale=rs,
                    num_inference_steps=steps,
                    generator=rnd,
                    prompt_embeds=llama_vec,
                    prompt_embeds_mask=llama_attention_mask,
                    prompt_poolers=clip_l_pooler,
                    negative_prompt_embeds=llama_vec_n,
                    negative_prompt_embeds_mask=llama_attention_mask_n,
                    negative_prompt_poolers=clip_l_pooler_n,
                    device=gpu,
                    dtype=torch.bfloat16,
                    image_embeddings=image_encoder_last_hidden_state,
                    latent_indices=latent_indices,
                    clean_latents=clean_latents,
                    clean_latent_indices=clean_latent_indices,
                    clean_latents_2x=clean_latents_2x,
                    clean_latent_2x_indices=clean_latent_2x_indices,
                    clean_latents_4x=clean_latents_4x,
                    clean_latent_4x_indices=clean_latent_4x_indices,
                    callback=callback,
                )
    
                total_generated_latent_frames += int(generated_latents.shape[2])
                history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
    
                if not high_vram:
                    offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
                    load_model_as_complete(vae, target_device=gpu)
    
                real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
    
                if history_pixels is None:
                    history_pixels = vae_decode(real_history_latents, vae).cpu()
                else:
                  section_latent_frames = latent_window_size * 2
                  overlapped_frames = min(latent_window_size * 4 - 3, history_pixels.shape[2])
                  
                  #if section_index == 0: 
                    #extra_latents = 1  # Add up to 2 extra latent frames for smoother overlap to initial video
                    #extra_pixel_frames = extra_latents * 4  # Approx. 4 pixel frames per latent
                    #overlapped_frames = min(overlapped_frames + extra_pixel_frames, history_pixels.shape[2], section_latent_frames * 4)

                  current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
                  history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
    
                if not high_vram:
                    unload_complete_models()
    
                output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
    
                # 20250506 pftq: Use input video FPS for output
                save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
                print(f"Latest video saved: {output_filename}")
                # 20250508 pftq: Save prompt to mp4 metadata comments
                set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}");
                print(f"Prompt saved to mp4 metadata comments: {output_filename}")
    
                # 20250506 pftq: Clean up previous partial files
                if previous_video is not None and os.path.exists(previous_video):
                    try:
                        os.remove(previous_video)
                        print(f"Previous partial video deleted: {previous_video}")
                    except Exception as e:
                        print(f"Error deleting previous partial video {previous_video}: {e}")
                previous_video = output_filename
    
                print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
    
                stream.output_queue.push(('file', output_filename))
    except:
        traceback.print_exc()

        if not high_vram:
            unload_complete_models(
                text_encoder, text_encoder_2, image_encoder, vae
            )

    stream.output_queue.push(('end', None))
    return
    
@spaces.GPU(duration=90)
def process(input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
    global stream, high_vram
    # 20250506 pftq: Updated assertion for video input
    assert input_video is not None, 'No input video!'

    yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)

    # 20250507 pftq: Even the H100 needs offloading if the video dimensions are 720p or higher
    if high_vram and (no_resize or resolution>640):
        print("Disabling high vram mode due to no resize and/or potentially higher resolution...")
        high_vram = False
        vae.enable_slicing()
        vae.enable_tiling()
        DynamicSwapInstaller.install_model(transformer, device=gpu)
        DynamicSwapInstaller.install_model(text_encoder, device=gpu)

    # 20250508 pftq: automatically set distilled cfg to 1 if cfg is used
    if cfg > 1:
        gs = 1
    
    stream = AsyncStream()

    # 20250506 pftq: Pass num_clean_frames, vae_batch, etc
    async_run(worker, input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch)

    output_filename = None

    while True:
        flag, data = stream.output_queue.next()

        if flag == 'file':
            output_filename = data
            yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)

        if flag == 'progress':
            preview, desc, html = data
            #yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
            yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background

        if flag == 'end':
            yield output_filename, gr.update(visible=False), desc+' Video complete.', '', gr.update(interactive=True), gr.update(interactive=False)
            break

def end_process():
    stream.input_queue.push('end')

quick_prompts = [
    'The girl dances gracefully, with clear movements, full of charm.',
    'A character doing some simple body movements.',
]
quick_prompts = [[x] for x in quick_prompts]

css = make_progress_bar_css()
block = gr.Blocks(css=css).queue()
with block:
    gr.Markdown('# Framepack F1 (Video Extender)')
    with gr.Row():
        with gr.Column():
            # 20250506 pftq: Changed to Video input from Image
            input_video = gr.Video(sources='upload', label="Input Video", height=320)
            prompt = gr.Textbox(label="Prompt", value='')
            #example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
            #example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)

            with gr.Row():
                start_button = gr.Button(value="Start Generation")
                end_button = gr.Button(value="End Generation", interactive=False)

            with gr.Group():
                with gr.Row():
                    use_teacache = gr.Checkbox(label='Use TeaCache', value=False, info='Faster speed, but often makes hands and fingers slightly worse.')
                    no_resize = gr.Checkbox(label='Force Original Video Resolution (No Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).')

                seed = gr.Number(label="Seed", value=31337, precision=0)

                batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.')

                resolution = gr.Number(label="Resolution (max width or height)", value=640, precision=0, visible=False)

                total_second_length = gr.Slider(label="Additional Video Length to Generate (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
                
                gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=3.0, step=0.01, info='Prompt adherence at the cost of less details from the input video, but to a lesser extent than Context Frames.')
                cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=True, info='Use this instead of Distilled for more detail/control + Negative Prompt (make sure Distilled set to 1). Doubles render time.')  # Should not change
                rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False)  # Should not change

                n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=True, info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).') 
                steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Increase for more quality, especially if using high non-distilled CFG.')

                num_clean_frames = gr.Slider(label="Number of Context Frames", minimum=2, maximum=10, value=5, step=1, info="Retain more video details but increase memory use. Reduce to 2 if memory issues.")
                
                default_vae = 32
                if high_vram:
                    default_vae = 128
                elif free_mem_gb>=20:
                    default_vae = 64
                    
                vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=256, value=default_vae, step=4, info="Reduce if running out of memory. Increase for better quality frames during fast motion.")

                latent_window_size = gr.Slider(label="Latent Window Size", minimum=9, maximum=33, value=9, step=1, visible=True, info='Generate more frames at a time (larger chunks). Less degradation and better blending but higher VRAM cost.') 

                gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")

                mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")

        with gr.Column():
            preview_image = gr.Image(label="Next Latents", height=200, visible=False)
            result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
            progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
            progress_bar = gr.HTML('', elem_classes='no-generating-animation')

    gr.HTML("""
        <div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>
    """)

    ips = [input_video, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
    start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
    end_button.click(fn=end_process)

block.launch(ssr_mode=False)