Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from motion.model import clip | |
import json | |
from motion.model.base_transformer import RefinedLayer, Refined_Transformer | |
from motion.model.Encode_Full import Encoder_Block | |
class MDM(nn.Module): | |
def __init__(self, njoints, nfeats, latent_dim=256, ff_size=1024, num_layers=8, num_heads=4, dropout=0.1, | |
activation="gelu", dataset='amass', clip_dim=512, | |
arch='trans_enc', clip_version=None, **kargs): | |
super().__init__() | |
self.encode_full = kargs.get("encode_full", 0) #### encode_full = 1 add tokens & encode_full = 2 model compress tokens | |
self.txt_tokens = kargs.get("txt_tokens", 0) #### txt_tokens = 1 add tokens & txt_tokens = 2 model compress tokens | |
self.frame_mask = kargs.get("frame_mask", 0) | |
self.dataset = dataset | |
self.condition_length = 77 | |
self.num_frames = kargs.get("num_frames", 196) | |
self.position_type = "static" #### static or rope only for llama arch | |
self.json_dict = kargs.get("json_dict") | |
if isinstance(self.num_frames, list) or isinstance(self.num_frames, tuple): | |
self.num_frames = self.num_frames[0] | |
self.njoints = njoints | |
self.nfeats = nfeats | |
self.latent_dim = latent_dim | |
self.ff_size = ff_size | |
self.num_layers = num_layers | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.activation = activation | |
self.clip_dim = clip_dim | |
self.action_emb = kargs.get('action_emb', None) | |
self.input_feats = self.njoints * self.nfeats | |
self.cond_mode = kargs.get('cond_mode', 'no_cond') | |
self.cond_mask_prob = kargs.get('cond_mask_prob', 0.) | |
self.arch = arch | |
self.input_process = InputProcess(self.input_feats, self.latent_dim) #### 输入 x 的 linear | |
self.output_process = OutputProcess(self.input_feats, self.latent_dim, self.njoints, | |
self.nfeats) | |
self.sequence_pos_encoder = PositionalEncoding(self.latent_dim, self.dropout) | |
if self.arch == 'trans_enc': | |
print("TRANS_ENC init") | |
seqTransEncoderLayer = nn.TransformerEncoderLayer(d_model=self.latent_dim, | |
nhead=self.num_heads, | |
dim_feedforward=self.ff_size, | |
dropout=self.dropout, | |
activation=self.activation) | |
self.seqTransEncoder = nn.TransformerEncoder(seqTransEncoderLayer, num_layers=self.num_layers) | |
elif self.arch == "refined_encoder": | |
TransLayer = RefinedLayer(self.latent_dim, self.num_heads, self.ff_size, self.dropout, self.activation, max_seq_len=self.num_frames, norm_type="rmsnorm") | |
self.seqTransEncoder = Refined_Transformer(TransLayer, self.num_layers) | |
elif self.arch == "refined_decoder": | |
TransLayer = RefinedLayer(self.latent_dim, self.num_heads, self.ff_size, self.dropout, self.activation, max_seq_len=self.num_frames, word_tokens=True, norm_type="rmsnorm") | |
self.seqTransEncoder = Refined_Transformer(TransLayer, self.num_layers) | |
elif self.arch == "llama_encoder": | |
TransLayer = RefinedLayer(self.latent_dim, self.num_heads, self.ff_size, self.dropout, self.activation, max_seq_len=self.num_frames, position_type=self.position_type, norm_type="rmsnorm", attention_type="llama") | |
self.seqTransEncoder = Refined_Transformer(TransLayer, self.num_layers) | |
elif self.arch == "llama_decoder": | |
TransLayer = RefinedLayer(self.latent_dim, self.num_heads, self.ff_size, self.dropout, self.activation, max_seq_len=self.num_frames, position_type=self.position_type, word_tokens=True, norm_type="rmsnorm", attention_type="llama") | |
self.seqTransEncoder = Refined_Transformer(TransLayer, self.num_layers) | |
else: | |
raise ValueError('Please choose correct architecture') | |
self.embed_timestep = TimestepEmbedder(self.latent_dim, self.sequence_pos_encoder) | |
if self.cond_mode != 'no_cond': | |
if 'text' in self.cond_mode: | |
self.embed_text = nn.Linear(self.clip_dim, self.latent_dim) | |
print('EMBED TEXT') | |
print('Loading CLIP...') | |
self.clip_version = clip_version | |
self.clip_model = self.load_and_freeze_clip(clip_version) | |
if self.txt_tokens == 2: | |
if self.arch in ["refined_encoder", "trans_enc", "llama_encoder"]: | |
scale = 3 | |
elif self.arch in ["refined_decoder", "llama_decoder"]: | |
scale = 2 | |
encode_compress_layer = RefinedLayer(d_model=self.latent_dim * scale, | |
nhead=self.num_heads, | |
dim_feedforward=self.ff_size, | |
dropout=self.dropout, | |
activation=self.activation) | |
self.condition_compress = nn.Sequential( | |
Refined_Transformer(encode_compress_layer, num_layers=1), | |
nn.Linear(self.latent_dim * scale, self.latent_dim, ) | |
) | |
if self.encode_full != 0: #### [1, bs, 512] -> [seq, bs, 1024] -> [seq, bs, 512] | |
self.code_full = Encoder_Block(begin_channel=self.input_feats, latent_dim=self.latent_dim, num_layers=6, TN=1) | |
if self.encode_full == 2: | |
encode_compress_layer = RefinedLayer(d_model=self.latent_dim * 2, | |
nhead=self.num_heads, | |
dim_feedforward=self.ff_size, | |
dropout=self.dropout, | |
activation=self.activation) | |
self.encode_compress = nn.Sequential( | |
Refined_Transformer(encode_compress_layer, num_layers=1), | |
nn.Linear(self.latent_dim * 2, self.latent_dim, ) | |
) | |
print(" =========================", self.cond_mode, "===================================") | |
def parameters_wo_clip(self): | |
return [p for name, p in self.named_parameters() if not name.startswith('clip_model.')] | |
def load_and_freeze_clip(self, clip_version): | |
clip_model, clip_preprocess = clip.load(clip_version, device='cpu', jit=False, download_root=self.json_dict["clip"]) # Must set jit=False for training | |
clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16 | |
clip_model.float() | |
# Freeze CLIP weights | |
clip_model.eval() | |
for p in clip_model.parameters(): | |
p.requires_grad = False | |
return clip_model | |
def mask_cond(self, cond, force_mask=False): | |
bs = cond.shape[0] | |
if force_mask: | |
return torch.zeros_like(cond) | |
elif self.training and self.cond_mask_prob > 0.: | |
mask = torch.bernoulli(torch.ones(bs, device=cond.device) * self.cond_mask_prob) # 1-> use null_cond, 0-> use real cond | |
if len(cond.shape) == 3: | |
mask = mask.view(bs, 1, 1) | |
else: | |
mask = mask.view(bs, 1) | |
return cond * (1. - mask) | |
else: | |
return cond | |
def mask_motion(self, motion): | |
# x: [batch_size, njoints, nfeats, max_frames], denoted x_t in the paper | |
if self.training and self.frame_mask > 0.: | |
pair_motion = torch.randperm(motion.shape[0]) | |
pair_motion = motion[pair_motion] | |
if len(motion.shape) == 4: | |
bs, njoints, nfeats, nframes = motion.shape | |
mask = torch.bernoulli(torch.ones([bs, 1, 1, nframes], device=motion.device) * self.frame_mask) # 1-> use null_cond, 0-> use real cond | |
mask = mask.repeat(1, njoints, nfeats, 1) | |
elif len(motion.shape) == 3: | |
seqlen, bs, latent_dim = motion.shape | |
mask = torch.bernoulli(torch.ones([seqlen, bs, 1], device=motion.device) * self.frame_mask) | |
mask = mask.repeat(1, 1, latent_dim) | |
return motion * (1. - mask) + pair_motion * mask | |
else: | |
return motion | |
def clip_text_embedding(self, raw_text): | |
device = self.clip_model.ln_final.weight.device | |
default_context_length = self.condition_length | |
texts = clip.tokenize(raw_text, context_length=default_context_length, truncate=True).to(device) # [bs, context_length] # if n_tokens > context_length -> will truncate | |
if self.txt_tokens == 0: | |
clip_feature = self.clip_model.encode_text(texts) | |
else: | |
with torch.no_grad(): | |
x = self.clip_model.token_embedding(texts).type(self.clip_model.dtype) # [batch_size, n_ctx, d_model] | |
x = x + self.clip_model.positional_embedding.type(self.clip_model.dtype) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.clip_model.transformer(x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.clip_model.ln_final(x).type(self.clip_model.dtype) | |
clip_feature = x[torch.arange(x.shape[0]), texts.argmax(dim=-1)] @ self.clip_model.text_projection | |
clip_feature = clip_feature.unsqueeze(1) | |
clip_feature = torch.cat([clip_feature, x], dim=1) #### [bs, T, 512] | |
return clip_feature | |
def get_mask(self, sz1, sz2): | |
mask = (torch.triu(torch.ones(sz1, sz2)) == 1).transpose(0, 1) | |
mask = mask.float() | |
mask = mask.masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) | |
mask.requires_grad = False | |
return mask | |
def forward(self, x, timesteps, y=None): | |
""" | |
x: [batch_size, njoints, nfeats, max_frames], denoted x_t in the paper | |
timesteps: [batch_size] (int) | |
""" | |
results = {} | |
emb = self.embed_timestep(timesteps) # [1, bs, d] | |
x = x.to(emb.dtype) | |
x = self.mask_motion(x) | |
real_length = x.shape[-1] | |
if self.encode_full != 0 and x.shape[-1] < self.num_frames: | |
extension = torch.zeros([x.shape[0], x.shape[1], x.shape[2], self.num_frames - x.shape[-1]], device=x.device, dtype=x.dtype) | |
x = torch.cat([x, extension], dim=-1) | |
if self.encode_full == 1: | |
latent = self.code_full(x) ### [seq, bs, 512] | |
current = self.input_process(x) | |
latent = latent.repeat(current.shape[0], 1, 1) | |
current = current + latent | |
elif self.encode_full == 2: | |
latent = self.code_full(x) ### [seq, bs, 512] | |
current = self.input_process(x) #### [seq, bs, 512] | |
latent = latent.repeat(current.shape[0], 1, 1) | |
current = torch.cat([current, latent], dim=2) | |
current = self.encode_compress(current) | |
else: | |
current = self.input_process(x) #### [seq, bs, 512] | |
force_mask = y.get('uncond', False) | |
if 'text' in self.cond_mode: | |
enc_text = self.clip_text_embedding(y['text']).to(emb.dtype) ### MASK_COND 会按照一定的比例把 batch_size 中的一部分文本句整句换成 [0, 0, ... 0] | |
txt_emb = self.embed_text(enc_text) | |
txt_emb = self.mask_cond(txt_emb, force_mask=force_mask) | |
if len(txt_emb.shape) == 3: | |
txt_emb = txt_emb.permute(1, 0, 2) | |
else: | |
txt_emb = txt_emb.unsqueeze(0) | |
else: | |
txt_emb = None | |
if txt_emb is not None: | |
all_emb = txt_emb | |
else: | |
all_emb = torch.zeros_like(emb) | |
if self.arch in ["refined_encoder", "trans_enc", "llama_encoder"] and txt_emb is not None: | |
if self.txt_tokens == 1: | |
word_embedding = all_emb[1::, :, :] | |
global_embedding = all_emb[0:1, :, :].repeat(word_embedding.shape[0], 1, 1) | |
all_emb = word_embedding + global_embedding | |
emb = emb.repeat(all_emb.shape[0], 1, 1) | |
emb += all_emb | |
elif self.txt_tokens == 2: | |
word_embedding = all_emb[1::, :, :] | |
global_embedding = all_emb[0:1, :, :].repeat(word_embedding.shape[0], 1, 1) | |
emb = emb.repeat(word_embedding.shape[0], 1, 1) | |
concat_embedding = torch.cat([emb, global_embedding, word_embedding], dim=2) | |
emb = self.condition_compress(concat_embedding) | |
else: | |
emb += all_emb | |
elif txt_emb is not None: | |
if self.txt_tokens == 1: | |
emb = emb.repeat(all_emb.shape[0], 1, 1) | |
emb += all_emb | |
elif self.txt_tokens == 2: | |
emb = emb.repeat(all_emb.shape[0], 1, 1) | |
concat_embedding = torch.cat([emb, all_emb], dim=2) | |
emb = self.condition_compress(concat_embedding) | |
else: | |
emb += all_emb | |
else: | |
emb = emb.repeat(all_emb.shape[0], 1, 1) | |
emb += all_emb | |
if self.arch in ["trans_enc", "refined_encoder", "llama_encoder"]: | |
real_token_length = emb.shape[0] ######### 用来截断输出,只保留真正的output | |
elif self.arch in ["refined_decoder", "llama_decoder"]: | |
real_token_length = 1 | |
if self.arch in ["trans_enc", "refined_encoder", "llama_encoder"]: | |
xseq = torch.cat([emb, current], dim=0) | |
if self.arch in ["trans_enc", "refined_encoder"] or self.position_type == "static": | |
xseq = self.sequence_pos_encoder(xseq) | |
output = self.seqTransEncoder(xseq) | |
elif self.arch in ["refined_decoder", "llama_decoder"]: | |
xseq = torch.cat([emb[0:1], current], dim=0) | |
word_tokens = emb[1::] | |
if self.arch in ["refined_decoder"] or self.position_type == "static": | |
xseq = self.sequence_pos_encoder(xseq) | |
# word_tokens = self.sequence_pos_encoder(word_tokens) | |
output = self.seqTransEncoder(xseq, word_tokens=word_tokens) | |
output = output[real_token_length:] | |
output = self.output_process(output) # [bs, njoints, nfeats, nframes] | |
output = output[:, :, :, :real_length] | |
results["output"] = output | |
return results | |
def _apply(self, fn): | |
super()._apply(fn) | |
def train(self, *args, **kwargs): | |
super().train(*args, **kwargs) | |
class PositionalEncoding(nn.Module): | |
def __init__(self, d_model, dropout=0.1, max_len=5000): | |
super(PositionalEncoding, self).__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
pe = torch.zeros(max_len, d_model) ###### max_len 是 T_steps 长度, d_model 是嵌入特征的维度 | |
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) | |
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model)) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
pe = pe.unsqueeze(0).transpose(0, 1) | |
self.register_parameter('pe', nn.Parameter(pe, requires_grad=False)) | |
def forward(self, x): | |
# not used in the final model | |
x = x + self.pe[:x.shape[0], :] | |
return self.dropout(x) | |
class TimestepEmbedder(nn.Module): | |
def __init__(self, latent_dim, sequence_pos_encoder): | |
super().__init__() | |
self.latent_dim = latent_dim | |
self.sequence_pos_encoder = sequence_pos_encoder | |
time_embed_dim = self.latent_dim | |
self.time_embed = nn.Sequential( | |
nn.Linear(self.latent_dim, time_embed_dim, ), | |
nn.SiLU(), | |
nn.Linear(time_embed_dim, time_embed_dim, ), | |
) | |
def forward(self, timesteps): #### timesteps 也是按照 position 的方式编码的 [times, 1, latent] -> [1, times, latent] ? | |
return self.time_embed(self.sequence_pos_encoder.pe[timesteps]).permute(1, 0, 2) | |
class InputProcess(nn.Module): | |
def __init__(self, input_feats, latent_dim): | |
super().__init__() | |
self.input_feats = input_feats | |
self.latent_dim = latent_dim | |
self.poseEmbedding = nn.Linear(self.input_feats, self.latent_dim) | |
def forward(self, x): | |
bs, njoints, nfeats, nframes = x.shape ### [B,263, nframes] -> [B, nframes, 263] | |
x = x.permute((3, 0, 1, 2)).reshape(nframes, bs, njoints*nfeats) | |
x = self.poseEmbedding(x) # [seqlen, bs, d] | |
return x | |
class OutputProcess(nn.Module): | |
def __init__(self, input_feats, latent_dim, njoints, nfeats): | |
super().__init__() | |
self.input_feats = input_feats | |
self.latent_dim = latent_dim | |
self.njoints = njoints | |
self.nfeats = nfeats | |
self.poseFinal = nn.Linear(self.latent_dim, self.input_feats) | |
def forward(self, output): | |
nframes, bs, d = output.shape | |
output = self.poseFinal(output) # [seqlen, bs, 150] | |
output = output.reshape(nframes, bs, self.njoints, self.nfeats) | |
output = output.permute(1, 2, 3, 0) # [bs, njoints, nfeats, nframes] | |
return output | |
class EmbedAction(nn.Module): | |
def __init__(self, num_actions, latent_dim): | |
super().__init__() | |
self.action_embedding = nn.Parameter(torch.randn(num_actions, latent_dim)) | |
def forward(self, input): | |
idx = input[:, 0].to(torch.long) # an index array must be long | |
output = self.action_embedding[idx] | |
return output |