File size: 18,205 Bytes
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae6df4
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from motion.model import clip
import json
from motion.model.base_transformer import RefinedLayer, Refined_Transformer
from motion.model.Encode_Full import Encoder_Block

class MDM(nn.Module):
    def __init__(self, njoints, nfeats, latent_dim=256, ff_size=1024, num_layers=8, num_heads=4, dropout=0.1,
                 activation="gelu", dataset='amass', clip_dim=512,
                 arch='trans_enc', clip_version=None, **kargs):
        super().__init__()

        self.encode_full = kargs.get("encode_full", 0)      #### encode_full = 1 add tokens  & encode_full = 2 model compress tokens
        self.txt_tokens = kargs.get("txt_tokens", 0)    #### txt_tokens = 1 add tokens  & txt_tokens = 2 model compress tokens
        self.frame_mask = kargs.get("frame_mask", 0)
        self.dataset = dataset
        self.condition_length = 77
        self.num_frames = kargs.get("num_frames", 196)
        self.position_type = "static"     #### static or rope  only for llama arch
        self.json_dict = kargs.get("json_dict")

        if isinstance(self.num_frames, list) or isinstance(self.num_frames, tuple):
            self.num_frames = self.num_frames[0]

        self.njoints = njoints
        self.nfeats = nfeats

        self.latent_dim = latent_dim

        self.ff_size = ff_size
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.dropout = dropout

        self.activation = activation
        self.clip_dim = clip_dim
        self.action_emb = kargs.get('action_emb', None)

        self.input_feats = self.njoints * self.nfeats

        self.cond_mode = kargs.get('cond_mode', 'no_cond')
        self.cond_mask_prob = kargs.get('cond_mask_prob', 0.)
        self.arch = arch

        self.input_process = InputProcess(self.input_feats, self.latent_dim)    #### 输入 x 的 linear
        self.output_process = OutputProcess(self.input_feats, self.latent_dim, self.njoints,
                                            self.nfeats)

        self.sequence_pos_encoder = PositionalEncoding(self.latent_dim, self.dropout)

        if self.arch == 'trans_enc':
            print("TRANS_ENC init")
            seqTransEncoderLayer = nn.TransformerEncoderLayer(d_model=self.latent_dim,
                                                            nhead=self.num_heads,
                                                            dim_feedforward=self.ff_size,
                                                            dropout=self.dropout,
                                                            activation=self.activation)
            self.seqTransEncoder = nn.TransformerEncoder(seqTransEncoderLayer, num_layers=self.num_layers)

        elif self.arch == "refined_encoder":
            TransLayer = RefinedLayer(self.latent_dim, self.num_heads, self.ff_size, self.dropout, self.activation, max_seq_len=self.num_frames, norm_type="rmsnorm")
            self.seqTransEncoder = Refined_Transformer(TransLayer, self.num_layers)

        elif self.arch == "refined_decoder":
            TransLayer = RefinedLayer(self.latent_dim, self.num_heads, self.ff_size, self.dropout, self.activation, max_seq_len=self.num_frames, word_tokens=True, norm_type="rmsnorm")
            self.seqTransEncoder = Refined_Transformer(TransLayer, self.num_layers)

        elif self.arch == "llama_encoder":
            TransLayer = RefinedLayer(self.latent_dim, self.num_heads, self.ff_size, self.dropout, self.activation, max_seq_len=self.num_frames, position_type=self.position_type, norm_type="rmsnorm", attention_type="llama")
            self.seqTransEncoder = Refined_Transformer(TransLayer, self.num_layers)

        elif self.arch == "llama_decoder":
            TransLayer = RefinedLayer(self.latent_dim, self.num_heads, self.ff_size, self.dropout, self.activation, max_seq_len=self.num_frames, position_type=self.position_type, word_tokens=True, norm_type="rmsnorm", attention_type="llama")
            self.seqTransEncoder = Refined_Transformer(TransLayer, self.num_layers)

        else:
            raise ValueError('Please choose correct architecture')

        self.embed_timestep = TimestepEmbedder(self.latent_dim, self.sequence_pos_encoder)

        if self.cond_mode != 'no_cond':
            if 'text' in self.cond_mode:
                self.embed_text = nn.Linear(self.clip_dim, self.latent_dim)
                print('EMBED TEXT')
                print('Loading CLIP...')
                self.clip_version = clip_version
                self.clip_model = self.load_and_freeze_clip(clip_version)

                if self.txt_tokens == 2:
                    if self.arch in ["refined_encoder", "trans_enc", "llama_encoder"]:
                        scale = 3
                    elif self.arch in ["refined_decoder", "llama_decoder"]:
                        scale = 2
                    encode_compress_layer = RefinedLayer(d_model=self.latent_dim * scale,
                                                                    nhead=self.num_heads,
                                                                    dim_feedforward=self.ff_size,
                                                                    dropout=self.dropout,
                                                                    activation=self.activation)
                    self.condition_compress = nn.Sequential(
                        Refined_Transformer(encode_compress_layer, num_layers=1),
                        nn.Linear(self.latent_dim * scale, self.latent_dim, )
                    )       

        if self.encode_full != 0: ####  [1, bs, 512] -> [seq, bs, 1024] -> [seq, bs, 512]
            self.code_full = Encoder_Block(begin_channel=self.input_feats, latent_dim=self.latent_dim, num_layers=6, TN=1)      

            if self.encode_full == 2:
                encode_compress_layer = RefinedLayer(d_model=self.latent_dim * 2,
                                                                nhead=self.num_heads,
                                                                dim_feedforward=self.ff_size,
                                                                dropout=self.dropout,
                                                                activation=self.activation)

                self.encode_compress = nn.Sequential(
                    Refined_Transformer(encode_compress_layer, num_layers=1),
                    nn.Linear(self.latent_dim * 2, self.latent_dim, )
                )

        print(" =========================", self.cond_mode, "===================================")

    def parameters_wo_clip(self):
        return [p for name, p in self.named_parameters() if not name.startswith('clip_model.')]

    def load_and_freeze_clip(self, clip_version):
        clip_model, clip_preprocess = clip.load(clip_version, device='cpu', jit=False, download_root=self.json_dict["clip"])  # Must set jit=False for training
        clip.model.convert_weights(clip_model)  # Actually this line is unnecessary since clip by default already on float16
        clip_model.float()
        # Freeze CLIP weights
        clip_model.eval()
        for p in clip_model.parameters():
            p.requires_grad = False

        return clip_model

    def mask_cond(self, cond, force_mask=False):
        bs = cond.shape[0]
        if force_mask:
            return torch.zeros_like(cond)
        elif self.training and self.cond_mask_prob > 0.:
            mask = torch.bernoulli(torch.ones(bs, device=cond.device) * self.cond_mask_prob)  # 1-> use null_cond, 0-> use real cond
            if len(cond.shape) == 3:
                mask = mask.view(bs, 1, 1)
            else:
                mask = mask.view(bs, 1)
            return cond * (1. - mask)
        else:
            return cond

    def mask_motion(self, motion):
        # x: [batch_size, njoints, nfeats, max_frames], denoted x_t in the paper

        if self.training and self.frame_mask > 0.:
            pair_motion = torch.randperm(motion.shape[0])
            pair_motion = motion[pair_motion]
            if len(motion.shape) == 4:
                bs, njoints, nfeats, nframes = motion.shape
                mask = torch.bernoulli(torch.ones([bs, 1, 1, nframes], device=motion.device) * self.frame_mask)  # 1-> use null_cond, 0-> use real cond
                mask = mask.repeat(1, njoints, nfeats, 1)
            elif len(motion.shape) == 3:
                seqlen, bs, latent_dim = motion.shape
                mask = torch.bernoulli(torch.ones([seqlen, bs, 1], device=motion.device) * self.frame_mask) 
                mask = mask.repeat(1, 1, latent_dim)
            return motion * (1. - mask) + pair_motion * mask
        else:
            return motion

    def clip_text_embedding(self, raw_text):
        device = self.clip_model.ln_final.weight.device
        default_context_length = self.condition_length
        texts = clip.tokenize(raw_text, context_length=default_context_length, truncate=True).to(device) # [bs, context_length] # if n_tokens > context_length -> will truncate
        if self.txt_tokens == 0:   
            clip_feature = self.clip_model.encode_text(texts)
        else:
            with torch.no_grad():
                x = self.clip_model.token_embedding(texts).type(self.clip_model.dtype)  # [batch_size, n_ctx, d_model]
                x = x + self.clip_model.positional_embedding.type(self.clip_model.dtype)
                x = x.permute(1, 0, 2)  # NLD -> LND
                x = self.clip_model.transformer(x)
                x = x.permute(1, 0, 2)  # LND -> NLD
                x = self.clip_model.ln_final(x).type(self.clip_model.dtype)
                clip_feature = x[torch.arange(x.shape[0]), texts.argmax(dim=-1)] @ self.clip_model.text_projection
            clip_feature = clip_feature.unsqueeze(1)
            clip_feature = torch.cat([clip_feature, x], dim=1)     #### [bs, T, 512]
        return clip_feature
        
    def get_mask(self, sz1, sz2):
        mask = (torch.triu(torch.ones(sz1, sz2)) == 1).transpose(0, 1)
        mask = mask.float()
        mask = mask.masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
        mask.requires_grad = False
        return mask

    def forward(self, x, timesteps, y=None):
        """
        x: [batch_size, njoints, nfeats, max_frames], denoted x_t in the paper
        timesteps: [batch_size] (int)
        """

        results = {}
        emb = self.embed_timestep(timesteps)  # [1, bs, d]
        x = x.to(emb.dtype)

        x = self.mask_motion(x)

        real_length = x.shape[-1]
        if self.encode_full != 0 and x.shape[-1] < self.num_frames:
            extension = torch.zeros([x.shape[0], x.shape[1], x.shape[2], self.num_frames - x.shape[-1]], device=x.device, dtype=x.dtype)
            x = torch.cat([x, extension], dim=-1)

        if self.encode_full == 1:
            latent = self.code_full(x) ### [seq, bs, 512]
            current = self.input_process(x)       
            latent = latent.repeat(current.shape[0], 1, 1)
            current = current + latent
        elif self.encode_full == 2:
            latent = self.code_full(x) ### [seq, bs, 512]
            current = self.input_process(x)                      #### [seq, bs, 512]
            latent = latent.repeat(current.shape[0], 1, 1)
            current = torch.cat([current, latent], dim=2)
            current = self.encode_compress(current)
        else:
            current = self.input_process(x)                      #### [seq, bs, 512]

        force_mask = y.get('uncond', False)
        if 'text' in self.cond_mode:
            enc_text = self.clip_text_embedding(y['text']).to(emb.dtype)      ### MASK_COND 会按照一定的比例把 batch_size 中的一部分文本句整句换成 [0, 0, ... 0]
            txt_emb = self.embed_text(enc_text)
            txt_emb = self.mask_cond(txt_emb, force_mask=force_mask)
            
            if len(txt_emb.shape) == 3:
                txt_emb = txt_emb.permute(1, 0, 2)
            else:
                txt_emb = txt_emb.unsqueeze(0)
        else:
            txt_emb = None

        if txt_emb is not None:
            all_emb = txt_emb
        else:
            all_emb = torch.zeros_like(emb)

        if self.arch in ["refined_encoder", "trans_enc", "llama_encoder"] and txt_emb is not None:
            if self.txt_tokens == 1:
                word_embedding = all_emb[1::, :, :]
                global_embedding = all_emb[0:1, :, :].repeat(word_embedding.shape[0], 1, 1)
                all_emb = word_embedding + global_embedding
                emb = emb.repeat(all_emb.shape[0], 1, 1)
                emb += all_emb
            elif self.txt_tokens == 2:
                word_embedding = all_emb[1::, :, :]
                global_embedding = all_emb[0:1, :, :].repeat(word_embedding.shape[0], 1, 1)
                emb = emb.repeat(word_embedding.shape[0], 1, 1)
                concat_embedding = torch.cat([emb, global_embedding, word_embedding], dim=2)
                emb = self.condition_compress(concat_embedding)
            else:
                emb += all_emb
        elif txt_emb is not None:
            if self.txt_tokens == 1:
                emb = emb.repeat(all_emb.shape[0], 1, 1)
                emb += all_emb
            elif self.txt_tokens == 2:
                emb = emb.repeat(all_emb.shape[0], 1, 1)
                concat_embedding = torch.cat([emb, all_emb], dim=2)
                emb = self.condition_compress(concat_embedding)    
            else:
                emb += all_emb 
        else:
            emb = emb.repeat(all_emb.shape[0], 1, 1)
            emb += all_emb

        if self.arch in ["trans_enc", "refined_encoder", "llama_encoder"]:
            real_token_length = emb.shape[0]           ######### 用来截断输出,只保留真正的output
        elif self.arch in ["refined_decoder", "llama_decoder"]:
            real_token_length = 1

        if self.arch in ["trans_enc", "refined_encoder", "llama_encoder"]:
            xseq = torch.cat([emb, current], dim=0)

            if self.arch in ["trans_enc", "refined_encoder"] or self.position_type == "static":
                xseq = self.sequence_pos_encoder(xseq)

            output = self.seqTransEncoder(xseq)
        elif self.arch in ["refined_decoder", "llama_decoder"]:
            xseq = torch.cat([emb[0:1], current], dim=0)
            word_tokens = emb[1::]

            if self.arch in ["refined_decoder"] or self.position_type == "static":
                xseq = self.sequence_pos_encoder(xseq)
                # word_tokens = self.sequence_pos_encoder(word_tokens)
                
            output = self.seqTransEncoder(xseq, word_tokens=word_tokens)

        output = output[real_token_length:]
        output = self.output_process(output)  # [bs, njoints, nfeats, nframes]
        output = output[:, :, :, :real_length]
        results["output"] = output
        return results
  
    def _apply(self, fn):
        super()._apply(fn)

    def train(self, *args, **kwargs):
        super().train(*args, **kwargs)

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):  
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)      ###### max_len 是 T_steps 长度, d_model 是嵌入特征的维度
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)

        self.register_parameter('pe', nn.Parameter(pe, requires_grad=False))

    def forward(self, x):
        # not used in the final model
        x = x + self.pe[:x.shape[0], :]
        return self.dropout(x)


class TimestepEmbedder(nn.Module):
    def __init__(self, latent_dim, sequence_pos_encoder):
        super().__init__()
        self.latent_dim = latent_dim
        self.sequence_pos_encoder = sequence_pos_encoder

        time_embed_dim = self.latent_dim
        self.time_embed = nn.Sequential(
            nn.Linear(self.latent_dim, time_embed_dim, ),
            nn.SiLU(),
            nn.Linear(time_embed_dim, time_embed_dim, ),
        )

    def forward(self, timesteps):       #### timesteps 也是按照 position 的方式编码的 [times, 1, latent] -> [1, times, latent] ?
        return self.time_embed(self.sequence_pos_encoder.pe[timesteps]).permute(1, 0, 2)


class InputProcess(nn.Module):
    def __init__(self, input_feats, latent_dim):
        super().__init__()
        self.input_feats = input_feats
        self.latent_dim = latent_dim
        self.poseEmbedding = nn.Linear(self.input_feats, self.latent_dim)
      
    def forward(self, x):
        bs, njoints, nfeats, nframes = x.shape          ### [B,263, nframes] -> [B, nframes, 263]
        x = x.permute((3, 0, 1, 2)).reshape(nframes, bs, njoints*nfeats) 
        x = self.poseEmbedding(x)  # [seqlen, bs, d]
        return x

     
class OutputProcess(nn.Module):
    def __init__(self, input_feats, latent_dim, njoints, nfeats):
        super().__init__()
        self.input_feats = input_feats
        self.latent_dim = latent_dim
        self.njoints = njoints
        self.nfeats = nfeats

        self.poseFinal = nn.Linear(self.latent_dim, self.input_feats)
    

    def forward(self, output):
        nframes, bs, d = output.shape
        output = self.poseFinal(output)  # [seqlen, bs, 150]
        output = output.reshape(nframes, bs, self.njoints, self.nfeats)
        output = output.permute(1, 2, 3, 0)  # [bs, njoints, nfeats, nframes]

        return output


class EmbedAction(nn.Module):
    def __init__(self, num_actions, latent_dim):
        super().__init__()
        self.action_embedding = nn.Parameter(torch.randn(num_actions, latent_dim))

    def forward(self, input):
        idx = input[:, 0].to(torch.long)  # an index array must be long
        output = self.action_embedding[idx]
        return output