SemanticBoost / motion /model /cfg_sampler.py
kleinhe
init
c3d0293
import numpy as np
import torch
import torch.nn as nn
from copy import deepcopy
# A wrapper model for Classifier-free guidance **SAMPLING** only
# https://arxiv.org/abs/2207.12598
class ClassifierFreeSampleModel(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model # model is the actual model to run
# assert self.model.cond_mask_prob > 0, 'Cannot run a guided diffusion on a model that has not been trained with no conditions'
# pointers to inner model
self.njoints = self.model.njoints
self.nfeats = self.model.nfeats
self.cond_mode = self.model.cond_mode
def forward(self, x, timesteps, y=None):
cond_mode = self.model.cond_mode
assert cond_mode in ['text', 'action', "motion", "text-motion"]
y_uncond = deepcopy(y)
y_uncond['uncond'] = True
out = self.model(x, timesteps, y) ###### 全部条件生成
if "predict_length" in out.keys():
y_uncond["predict_mask"] = out["predict_length"]
out_uncond = self.model(x, timesteps, y_uncond) ####### 全部无条件
output = {}
y['scale'] = y['scale'].to(out_uncond["output"].device)
output["output"] = out_uncond["output"] + (y['scale'].view(-1, 1, 1, 1) * (out["output"] - out_uncond["output"]))
return output ##### 这里并不是生成 \epsilon,而是特征