Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
from copy import deepcopy | |
# A wrapper model for Classifier-free guidance **SAMPLING** only | |
# https://arxiv.org/abs/2207.12598 | |
class ClassifierFreeSampleModel(nn.Module): | |
def __init__(self, model): | |
super().__init__() | |
self.model = model # model is the actual model to run | |
# assert self.model.cond_mask_prob > 0, 'Cannot run a guided diffusion on a model that has not been trained with no conditions' | |
# pointers to inner model | |
self.njoints = self.model.njoints | |
self.nfeats = self.model.nfeats | |
self.cond_mode = self.model.cond_mode | |
def forward(self, x, timesteps, y=None): | |
cond_mode = self.model.cond_mode | |
assert cond_mode in ['text', 'action', "motion", "text-motion"] | |
y_uncond = deepcopy(y) | |
y_uncond['uncond'] = True | |
out = self.model(x, timesteps, y) ###### 全部条件生成 | |
if "predict_length" in out.keys(): | |
y_uncond["predict_mask"] = out["predict_length"] | |
out_uncond = self.model(x, timesteps, y_uncond) ####### 全部无条件 | |
output = {} | |
y['scale'] = y['scale'].to(out_uncond["output"].device) | |
output["output"] = out_uncond["output"] + (y['scale'].view(-1, 1, 1, 1) * (out["output"] - out_uncond["output"])) | |
return output ##### 这里并不是生成 \epsilon,而是特征 | |