import numpy as np import torch import torch.nn as nn from copy import deepcopy # A wrapper model for Classifier-free guidance **SAMPLING** only # https://arxiv.org/abs/2207.12598 class ClassifierFreeSampleModel(nn.Module): def __init__(self, model): super().__init__() self.model = model # model is the actual model to run # assert self.model.cond_mask_prob > 0, 'Cannot run a guided diffusion on a model that has not been trained with no conditions' # pointers to inner model self.njoints = self.model.njoints self.nfeats = self.model.nfeats self.cond_mode = self.model.cond_mode def forward(self, x, timesteps, y=None): cond_mode = self.model.cond_mode assert cond_mode in ['text', 'action', "motion", "text-motion"] y_uncond = deepcopy(y) y_uncond['uncond'] = True out = self.model(x, timesteps, y) ###### 全部条件生成 if "predict_length" in out.keys(): y_uncond["predict_mask"] = out["predict_length"] out_uncond = self.model(x, timesteps, y_uncond) ####### 全部无条件 output = {} y['scale'] = y['scale'].to(out_uncond["output"].device) output["output"] = out_uncond["output"] + (y['scale'].view(-1, 1, 1, 1) * (out["output"] - out_uncond["output"])) return output ##### 这里并不是生成 \epsilon,而是特征