kleinhe
init
c3d0293
import os
import random
import json
import pickle as pkl
import cv2
import numpy as np
import imageio
import torch
from packaging import version as pver
from yacs.config import CfgNode as CN
def load_config(path, default_path=None):
cfg = CN(new_allowed=True)
if default_path is not None:
cfg.merge_from_file(default_path)
cfg.merge_from_file(path)
return cfg
def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return torch.sum(x * y, -1, keepdim=True)
def custom_meshgrid(*args):
# ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
if pver.parse(torch.__version__) < pver.parse('1.10'):
return torch.meshgrid(*args)
else:
return torch.meshgrid(*args, indexing='ij')
def plot_grid_images(images, row, col, save_path=None):
"""
Args:
images: np.array [B, H, W, 3]
row:
col:
save_path:
Returns:
"""
assert row * col == images.shape[0]
images = np.vstack([np.hstack(images[r * col:(r + 1) * col]) for r in range(row)])
if save_path:
cv2.imwrite(save_path, images * 255)
return images
def safe_normalize(x, eps=1e-20):
return x / torch.sqrt(torch.clamp(torch.sum(x * x, -1, keepdim=True), min=eps))
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = True
def torch_vis_2d(x, renormalize=False):
# x: [3, H, W], [H, W, 3] or [1, H, W] or [H, W]
import matplotlib.pyplot as plt
import numpy as np
import torch
if isinstance(x, torch.Tensor):
if len(x.shape) == 3 and x.shape[0] == 3:
x = x.permute(1, 2, 0).squeeze()
x = x.detach().cpu().numpy()
print(f'[torch_vis_2d] {x.shape}, {x.dtype}, {x.min()} ~ {x.max()}')
x = x.astype(np.float32)
# renormalize
if renormalize:
x = (x - x.min(axis=0, keepdims=True)) / (x.max(axis=0, keepdims=True) - x.min(axis=0, keepdims=True) + 1e-8)
plt.imshow(x)
plt.show()
@torch.cuda.amp.autocast(enabled=False)
def get_rays(poses, intrinsics, H, W, N=-1, error_map=None):
''' get rays
Args:
poses: [B, 4, 4], cam2world
intrinsics: [4]
H, W, N: int
error_map: [B, 128 * 128], sample probability based on training error
Returns:
rays_o, rays_d: [B, N, 3]
inds: [B, N]
'''
device = poses.device
B = poses.shape[0]
fx, fy, cx, cy = intrinsics
i, j = custom_meshgrid(torch.linspace(0, W - 1, W, device=device), torch.linspace(0, H - 1, H, device=device))
i = i.t().reshape([1, H * W]).expand([B, H * W]) + 0.5
j = j.t().reshape([1, H * W]).expand([B, H * W]) + 0.5
results = {}
if N > 0:
N = min(N, H * W)
if error_map is None:
inds = torch.randint(0, H * W, size=[N], device=device) # may duplicate
inds = inds.expand([B, N])
else:
# weighted sample on a low-reso grid
inds_coarse = torch.multinomial(error_map.to(device), N, replacement=False) # [B, N], but in [0, 128*128)
# map to the original resolution with random perturb.
inds_x, inds_y = inds_coarse // 128, inds_coarse % 128 # `//` will throw a warning in torch 1.10... anyway.
sx, sy = H / 128, W / 128
inds_x = (inds_x * sx + torch.rand(B, N, device=device) * sx).long().clamp(max=H - 1)
inds_y = (inds_y * sy + torch.rand(B, N, device=device) * sy).long().clamp(max=W - 1)
inds = inds_x * W + inds_y
results['inds_coarse'] = inds_coarse # need this when updating error_map
i = torch.gather(i, -1, inds)
j = torch.gather(j, -1, inds)
results['inds'] = inds
else:
inds = torch.arange(H * W, device=device).expand([B, H * W])
zs = - torch.ones_like(i)
xs = - (i - cx) / fx * zs
ys = (j - cy) / fy * zs
directions = torch.stack((xs, ys, zs), dim=-1)
# directions = safe_normalize(directions)
rays_d = directions @ poses[:, :3, :3].transpose(-1, -2) # (B, N, 3)
rays_o = poses[..., :3, 3] # [B, 3]
rays_o = rays_o[..., None, :].expand_as(rays_d) # [B, N, 3]
results['rays_o'] = rays_o
results['rays_d'] = rays_d
return rays_o, rays_d
def scale_img_nhwc(x, size, mag='bilinear', min='bilinear'):
assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[
1]), "Trying to magnify image in one dimension and minify in the other"
y = x.permute(0, 3, 1, 2) # NHWC -> NCHW
if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger
y = torch.nn.functional.interpolate(y, size, mode=min)
else: # Magnification
if mag == 'bilinear' or mag == 'bicubic':
y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True)
else:
y = torch.nn.functional.interpolate(y, size, mode=mag)
return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC
def scale_img_hwc(x, size, mag='bilinear', min='bilinear'):
return scale_img_nhwc(x[None, ...], size, mag, min)[0]
def scale_img_nhw(x, size, mag='bilinear', min='bilinear'):
return scale_img_nhwc(x[..., None], size, mag, min)[..., 0]
def scale_img_hw(x, size, mag='bilinear', min='bilinear'):
return scale_img_nhwc(x[None, ..., None], size, mag, min)[0, ..., 0]
def trunc_rev_sigmoid(x, eps=1e-6):
x = x.clamp(eps, 1 - eps)
return torch.log(x / (1 - x))
def save_image(fn, x: np.ndarray):
try:
if os.path.splitext(fn)[1] == ".png":
imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8),
compress_level=3) # Low compression for faster saving
else:
imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8))
except:
print("WARNING: FAILED to save image %s" % fn)
# Reworked so this matches gluPerspective / glm::perspective, using fovy
def perspective(fovy=0.7854, aspect=1.0, n=0.1, f=1000.0, device=None):
y = np.tan(fovy / 2)
return torch.tensor([[1 / (y * aspect), 0, 0, 0],
[0, 1 / -y, 0, 0],
[0, 0, -(f + n) / (f - n), -(2 * f * n) / (f - n)],
[0, 0, -1, 0]], dtype=torch.float32, device=device)
def translate(x, y, z, device=None):
return torch.tensor([[1, 0, 0, x],
[0, 1, 0, y],
[0, 0, 1, z],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_x(a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[1, 0, 0, 0],
[0, c, s, 0],
[0, -s, c, 0],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_y(a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[c, 0, s, 0],
[0, 1, 0, 0],
[-s, 0, c, 0],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
@torch.no_grad()
def random_rotation_translation(t, device=None):
m = np.random.normal(size=[3, 3])
m[1] = np.cross(m[0], m[2])
m[2] = np.cross(m[0], m[1])
m = m / np.linalg.norm(m, axis=1, keepdims=True)
m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
m[3, 3] = 1.0
m[:3, 3] = np.random.uniform(-t, t, size=[3])
return torch.tensor(m, dtype=torch.float32, device=device)
def make_rotate(rx, ry, rz):
sinX = np.sin(rx)
sinY = np.sin(ry)
sinZ = np.sin(rz)
cosX = np.cos(rx)
cosY = np.cos(ry)
cosZ = np.cos(rz)
Rx = np.zeros((3, 3))
Rx[0, 0] = 1.0
Rx[1, 1] = cosX
Rx[1, 2] = -sinX
Rx[2, 1] = sinX
Rx[2, 2] = cosX
Ry = np.zeros((3, 3))
Ry[0, 0] = cosY
Ry[0, 2] = sinY
Ry[1, 1] = 1.0
Ry[2, 0] = -sinY
Ry[2, 2] = cosY
Rz = np.zeros((3, 3))
Rz[0, 0] = cosZ
Rz[0, 1] = -sinZ
Rz[1, 0] = sinZ
Rz[1, 1] = cosZ
Rz[2, 2] = 1.0
R = np.matmul(np.matmul(Rz, Ry), Rx)
return R
class SMPLXSeg:
def __init__(self, base_dir):
smplx_dir = os.path.join(base_dir, "smplx")
smplx_segs = json.load(open(f"{smplx_dir}/smplx_vert_segementation.json"))
flame_segs = pkl.load(open(f"{smplx_dir}/FLAME_masks.pkl", "rb"), encoding='latin1')
smplx_face = np.load(f"{smplx_dir}/smplx_faces.npy")
smplx_flame_vid = np.load(f"{smplx_dir}/FLAME_SMPLX_vertex_ids.npy", allow_pickle=True)
self.eyeball_ids = smplx_segs["leftEye"] + smplx_segs["rightEye"]
self.hands_ids = smplx_segs["leftHand"] + smplx_segs["rightHand"] + \
smplx_segs["leftHandIndex1"] + smplx_segs["rightHandIndex1"]
self.neck_ids = smplx_segs["neck"]
self.head_ids = smplx_segs["head"]
self.front_face_ids = list(smplx_flame_vid[flame_segs["face"]])
self.ears_ids = list(smplx_flame_vid[flame_segs["left_ear"]]) + list(smplx_flame_vid[flame_segs["right_ear"]])
self.forehead_ids = list(smplx_flame_vid[flame_segs["forehead"]])
self.lips_ids = list(smplx_flame_vid[flame_segs["lips"]])
self.nose_ids = list(smplx_flame_vid[flame_segs["nose"]])
self.eyes_ids = list(smplx_flame_vid[flame_segs["right_eye_region"]]) + list(
smplx_flame_vid[flame_segs["left_eye_region"]])
# re-mesh mask
remesh_ids = list(set(self.front_face_ids) - set(self.forehead_ids)) + self.ears_ids + self.eyeball_ids + self.hands_ids
remesh_mask = ~np.isin(np.arange(10475), remesh_ids)
self.remesh_mask = remesh_mask[smplx_face].all(axis=1)
def create_checkerboard(h, w, c, grid_size):
num_grid_row = h // grid_size
num_grid_col = w // grid_size
grid_ones = np.ones((grid_size, grid_size, c))
grid_zeros = np.zeros((grid_size, grid_size, c))
checkerboard = np.vstack([
np.hstack([grid_ones if (c + r) % 2 == 1 else grid_zeros for c in range(num_grid_col)])
for r in range(num_grid_row)
])
# pad
cx, cy, _ = checkerboard.shape
out = np.ones((h, w, c))
dx = (h - cx) // 2
dy = (w - cy) // 2
out[dx:dx + cx, dy:dy + cy] = checkerboard
return out
if __name__ == '__main__':
out = create_checkerboard(512, 512, 3, 64)
import cv2
cv2.imwrite("ck.png", out * 255)