Spaces:
Runtime error
Runtime error
File size: 10,617 Bytes
c3d0293 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import os
import random
import json
import pickle as pkl
import cv2
import numpy as np
import imageio
import torch
from packaging import version as pver
from yacs.config import CfgNode as CN
def load_config(path, default_path=None):
cfg = CN(new_allowed=True)
if default_path is not None:
cfg.merge_from_file(default_path)
cfg.merge_from_file(path)
return cfg
def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return torch.sum(x * y, -1, keepdim=True)
def custom_meshgrid(*args):
# ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
if pver.parse(torch.__version__) < pver.parse('1.10'):
return torch.meshgrid(*args)
else:
return torch.meshgrid(*args, indexing='ij')
def plot_grid_images(images, row, col, save_path=None):
"""
Args:
images: np.array [B, H, W, 3]
row:
col:
save_path:
Returns:
"""
assert row * col == images.shape[0]
images = np.vstack([np.hstack(images[r * col:(r + 1) * col]) for r in range(row)])
if save_path:
cv2.imwrite(save_path, images * 255)
return images
def safe_normalize(x, eps=1e-20):
return x / torch.sqrt(torch.clamp(torch.sum(x * x, -1, keepdim=True), min=eps))
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = True
def torch_vis_2d(x, renormalize=False):
# x: [3, H, W], [H, W, 3] or [1, H, W] or [H, W]
import matplotlib.pyplot as plt
import numpy as np
import torch
if isinstance(x, torch.Tensor):
if len(x.shape) == 3 and x.shape[0] == 3:
x = x.permute(1, 2, 0).squeeze()
x = x.detach().cpu().numpy()
print(f'[torch_vis_2d] {x.shape}, {x.dtype}, {x.min()} ~ {x.max()}')
x = x.astype(np.float32)
# renormalize
if renormalize:
x = (x - x.min(axis=0, keepdims=True)) / (x.max(axis=0, keepdims=True) - x.min(axis=0, keepdims=True) + 1e-8)
plt.imshow(x)
plt.show()
@torch.cuda.amp.autocast(enabled=False)
def get_rays(poses, intrinsics, H, W, N=-1, error_map=None):
''' get rays
Args:
poses: [B, 4, 4], cam2world
intrinsics: [4]
H, W, N: int
error_map: [B, 128 * 128], sample probability based on training error
Returns:
rays_o, rays_d: [B, N, 3]
inds: [B, N]
'''
device = poses.device
B = poses.shape[0]
fx, fy, cx, cy = intrinsics
i, j = custom_meshgrid(torch.linspace(0, W - 1, W, device=device), torch.linspace(0, H - 1, H, device=device))
i = i.t().reshape([1, H * W]).expand([B, H * W]) + 0.5
j = j.t().reshape([1, H * W]).expand([B, H * W]) + 0.5
results = {}
if N > 0:
N = min(N, H * W)
if error_map is None:
inds = torch.randint(0, H * W, size=[N], device=device) # may duplicate
inds = inds.expand([B, N])
else:
# weighted sample on a low-reso grid
inds_coarse = torch.multinomial(error_map.to(device), N, replacement=False) # [B, N], but in [0, 128*128)
# map to the original resolution with random perturb.
inds_x, inds_y = inds_coarse // 128, inds_coarse % 128 # `//` will throw a warning in torch 1.10... anyway.
sx, sy = H / 128, W / 128
inds_x = (inds_x * sx + torch.rand(B, N, device=device) * sx).long().clamp(max=H - 1)
inds_y = (inds_y * sy + torch.rand(B, N, device=device) * sy).long().clamp(max=W - 1)
inds = inds_x * W + inds_y
results['inds_coarse'] = inds_coarse # need this when updating error_map
i = torch.gather(i, -1, inds)
j = torch.gather(j, -1, inds)
results['inds'] = inds
else:
inds = torch.arange(H * W, device=device).expand([B, H * W])
zs = - torch.ones_like(i)
xs = - (i - cx) / fx * zs
ys = (j - cy) / fy * zs
directions = torch.stack((xs, ys, zs), dim=-1)
# directions = safe_normalize(directions)
rays_d = directions @ poses[:, :3, :3].transpose(-1, -2) # (B, N, 3)
rays_o = poses[..., :3, 3] # [B, 3]
rays_o = rays_o[..., None, :].expand_as(rays_d) # [B, N, 3]
results['rays_o'] = rays_o
results['rays_d'] = rays_d
return rays_o, rays_d
def scale_img_nhwc(x, size, mag='bilinear', min='bilinear'):
assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[
1]), "Trying to magnify image in one dimension and minify in the other"
y = x.permute(0, 3, 1, 2) # NHWC -> NCHW
if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger
y = torch.nn.functional.interpolate(y, size, mode=min)
else: # Magnification
if mag == 'bilinear' or mag == 'bicubic':
y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True)
else:
y = torch.nn.functional.interpolate(y, size, mode=mag)
return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC
def scale_img_hwc(x, size, mag='bilinear', min='bilinear'):
return scale_img_nhwc(x[None, ...], size, mag, min)[0]
def scale_img_nhw(x, size, mag='bilinear', min='bilinear'):
return scale_img_nhwc(x[..., None], size, mag, min)[..., 0]
def scale_img_hw(x, size, mag='bilinear', min='bilinear'):
return scale_img_nhwc(x[None, ..., None], size, mag, min)[0, ..., 0]
def trunc_rev_sigmoid(x, eps=1e-6):
x = x.clamp(eps, 1 - eps)
return torch.log(x / (1 - x))
def save_image(fn, x: np.ndarray):
try:
if os.path.splitext(fn)[1] == ".png":
imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8),
compress_level=3) # Low compression for faster saving
else:
imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8))
except:
print("WARNING: FAILED to save image %s" % fn)
# Reworked so this matches gluPerspective / glm::perspective, using fovy
def perspective(fovy=0.7854, aspect=1.0, n=0.1, f=1000.0, device=None):
y = np.tan(fovy / 2)
return torch.tensor([[1 / (y * aspect), 0, 0, 0],
[0, 1 / -y, 0, 0],
[0, 0, -(f + n) / (f - n), -(2 * f * n) / (f - n)],
[0, 0, -1, 0]], dtype=torch.float32, device=device)
def translate(x, y, z, device=None):
return torch.tensor([[1, 0, 0, x],
[0, 1, 0, y],
[0, 0, 1, z],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_x(a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[1, 0, 0, 0],
[0, c, s, 0],
[0, -s, c, 0],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_y(a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[c, 0, s, 0],
[0, 1, 0, 0],
[-s, 0, c, 0],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
@torch.no_grad()
def random_rotation_translation(t, device=None):
m = np.random.normal(size=[3, 3])
m[1] = np.cross(m[0], m[2])
m[2] = np.cross(m[0], m[1])
m = m / np.linalg.norm(m, axis=1, keepdims=True)
m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
m[3, 3] = 1.0
m[:3, 3] = np.random.uniform(-t, t, size=[3])
return torch.tensor(m, dtype=torch.float32, device=device)
def make_rotate(rx, ry, rz):
sinX = np.sin(rx)
sinY = np.sin(ry)
sinZ = np.sin(rz)
cosX = np.cos(rx)
cosY = np.cos(ry)
cosZ = np.cos(rz)
Rx = np.zeros((3, 3))
Rx[0, 0] = 1.0
Rx[1, 1] = cosX
Rx[1, 2] = -sinX
Rx[2, 1] = sinX
Rx[2, 2] = cosX
Ry = np.zeros((3, 3))
Ry[0, 0] = cosY
Ry[0, 2] = sinY
Ry[1, 1] = 1.0
Ry[2, 0] = -sinY
Ry[2, 2] = cosY
Rz = np.zeros((3, 3))
Rz[0, 0] = cosZ
Rz[0, 1] = -sinZ
Rz[1, 0] = sinZ
Rz[1, 1] = cosZ
Rz[2, 2] = 1.0
R = np.matmul(np.matmul(Rz, Ry), Rx)
return R
class SMPLXSeg:
def __init__(self, base_dir):
smplx_dir = os.path.join(base_dir, "smplx")
smplx_segs = json.load(open(f"{smplx_dir}/smplx_vert_segementation.json"))
flame_segs = pkl.load(open(f"{smplx_dir}/FLAME_masks.pkl", "rb"), encoding='latin1')
smplx_face = np.load(f"{smplx_dir}/smplx_faces.npy")
smplx_flame_vid = np.load(f"{smplx_dir}/FLAME_SMPLX_vertex_ids.npy", allow_pickle=True)
self.eyeball_ids = smplx_segs["leftEye"] + smplx_segs["rightEye"]
self.hands_ids = smplx_segs["leftHand"] + smplx_segs["rightHand"] + \
smplx_segs["leftHandIndex1"] + smplx_segs["rightHandIndex1"]
self.neck_ids = smplx_segs["neck"]
self.head_ids = smplx_segs["head"]
self.front_face_ids = list(smplx_flame_vid[flame_segs["face"]])
self.ears_ids = list(smplx_flame_vid[flame_segs["left_ear"]]) + list(smplx_flame_vid[flame_segs["right_ear"]])
self.forehead_ids = list(smplx_flame_vid[flame_segs["forehead"]])
self.lips_ids = list(smplx_flame_vid[flame_segs["lips"]])
self.nose_ids = list(smplx_flame_vid[flame_segs["nose"]])
self.eyes_ids = list(smplx_flame_vid[flame_segs["right_eye_region"]]) + list(
smplx_flame_vid[flame_segs["left_eye_region"]])
# re-mesh mask
remesh_ids = list(set(self.front_face_ids) - set(self.forehead_ids)) + self.ears_ids + self.eyeball_ids + self.hands_ids
remesh_mask = ~np.isin(np.arange(10475), remesh_ids)
self.remesh_mask = remesh_mask[smplx_face].all(axis=1)
def create_checkerboard(h, w, c, grid_size):
num_grid_row = h // grid_size
num_grid_col = w // grid_size
grid_ones = np.ones((grid_size, grid_size, c))
grid_zeros = np.zeros((grid_size, grid_size, c))
checkerboard = np.vstack([
np.hstack([grid_ones if (c + r) % 2 == 1 else grid_zeros for c in range(num_grid_col)])
for r in range(num_grid_row)
])
# pad
cx, cy, _ = checkerboard.shape
out = np.ones((h, w, c))
dx = (h - cx) // 2
dy = (w - cy) // 2
out[dx:dx + cx, dy:dy + cy] = checkerboard
return out
if __name__ == '__main__':
out = create_checkerboard(512, 512, 3, 64)
import cv2
cv2.imwrite("ck.png", out * 255)
|