Update app.py
Browse files
app.py
CHANGED
@@ -95,6 +95,21 @@ vector_store = Qdrant(
|
|
95 |
)
|
96 |
retriever = vector_store.as_retriever()
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
|
100 |
|
@@ -137,9 +152,6 @@ elif "All" in selected_model:
|
|
137 |
from groq import Groq
|
138 |
import google.generativeai as genai
|
139 |
genai.configure(api_key=st.secrets["GEMINI_API_KEY"])
|
140 |
-
pair_ranker = pipeline("text-classification", model="llm-blender/PairRM")
|
141 |
-
gen_fuser = pipeline("text-generation", model="llm-blender/gen_fuser_3b", max_length=2048, do_sample=False)
|
142 |
-
|
143 |
def get_all_model_responses(prompt):
|
144 |
openai_resp = ChatOpenAI(model="gpt-4o", temperature=0.2, api_key=st.secrets["OPENAI_API_KEY"]).invoke(
|
145 |
[{"role": "system", "content": prompt}]).content
|
@@ -332,26 +344,6 @@ def rerank_with_cohere(query, documents, top_n=5):
|
|
332 |
results = co.rerank(query=query, documents=raw_texts, top_n=min(top_n, len(raw_texts)), model="rerank-v3.5")
|
333 |
return [documents[result.index] for result in results]
|
334 |
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
pair_ranker = pipeline(
|
340 |
-
"text-classification",
|
341 |
-
model="llm-blender/PairRM",
|
342 |
-
tokenizer="llm-blender/PairRM",
|
343 |
-
return_all_scores=True
|
344 |
-
)
|
345 |
-
|
346 |
-
gen_fuser = pipeline(
|
347 |
-
"text-generation",
|
348 |
-
model="llm-blender/gen_fuser_3b",
|
349 |
-
tokenizer="llm-blender/gen_fuser_3b",
|
350 |
-
max_length=2048,
|
351 |
-
do_sample=False
|
352 |
-
)
|
353 |
-
|
354 |
-
|
355 |
# Final answer generation using reranked context
|
356 |
def get_reranked_response(query):
|
357 |
docs = retriever.get_relevant_documents(query)
|
|
|
95 |
)
|
96 |
retriever = vector_store.as_retriever()
|
97 |
|
98 |
+
pair_ranker = pipeline(
|
99 |
+
"text-classification",
|
100 |
+
model="llm-blender/PairRM",
|
101 |
+
tokenizer="llm-blender/PairRM",
|
102 |
+
return_all_scores=True
|
103 |
+
)
|
104 |
+
|
105 |
+
gen_fuser = pipeline(
|
106 |
+
"text-generation",
|
107 |
+
model="llm-blender/gen_fuser_3b",
|
108 |
+
tokenizer="llm-blender/gen_fuser_3b",
|
109 |
+
max_length=2048,
|
110 |
+
do_sample=False
|
111 |
+
)
|
112 |
+
|
113 |
|
114 |
|
115 |
|
|
|
152 |
from groq import Groq
|
153 |
import google.generativeai as genai
|
154 |
genai.configure(api_key=st.secrets["GEMINI_API_KEY"])
|
|
|
|
|
|
|
155 |
def get_all_model_responses(prompt):
|
156 |
openai_resp = ChatOpenAI(model="gpt-4o", temperature=0.2, api_key=st.secrets["OPENAI_API_KEY"]).invoke(
|
157 |
[{"role": "system", "content": prompt}]).content
|
|
|
344 |
results = co.rerank(query=query, documents=raw_texts, top_n=min(top_n, len(raw_texts)), model="rerank-v3.5")
|
345 |
return [documents[result.index] for result in results]
|
346 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
# Final answer generation using reranked context
|
348 |
def get_reranked_response(query):
|
349 |
docs = retriever.get_relevant_documents(query)
|