Update app.py
Browse files
app.py
CHANGED
@@ -24,6 +24,7 @@ from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
|
24 |
from langchain_community.vectorstores import Qdrant
|
25 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
26 |
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
|
|
27 |
import nest_asyncio
|
28 |
|
29 |
torch.cuda.empty_cache()
|
@@ -35,7 +36,7 @@ st.set_page_config(page_title="DermBOT", page_icon="🧬", layout="centered")
|
|
35 |
|
36 |
|
37 |
# === Model Selection ===
|
38 |
-
available_models = ["
|
39 |
st.session_state["selected_model"] = st.sidebar.selectbox("Select LLM Model", available_models)
|
40 |
|
41 |
|
@@ -130,6 +131,37 @@ elif "Gemini" in selected_model:
|
|
130 |
return response.text
|
131 |
|
132 |
llm = get_gemini_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
else:
|
135 |
st.error("Unsupported model selected.")
|
@@ -293,30 +325,50 @@ def export_chat_to_pdf(messages):
|
|
293 |
|
294 |
|
295 |
#Reranker utility
|
296 |
-
def rerank_with_cohere(query
|
297 |
if not documents:
|
298 |
return []
|
299 |
-
|
300 |
-
raw_texts = [doc.page_content if hasattr(doc, "page_content") else str(doc) for doc in documents]
|
301 |
results = co.rerank(query=query, documents=raw_texts, top_n=min(top_n, len(raw_texts)), model="rerank-v3.5")
|
302 |
-
|
303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
# Final answer generation using reranked context
|
306 |
-
def get_reranked_response(query
|
307 |
docs = retriever.get_relevant_documents(query)
|
308 |
reranked_docs = rerank_with_cohere(query, docs)
|
309 |
context = "\n\n".join([doc.page_content for doc in reranked_docs])
|
310 |
prompt = AI_PROMPT_TEMPLATE.format(question=query, context=context)
|
311 |
|
|
|
|
|
|
|
|
|
|
|
312 |
if callable(llm):
|
313 |
-
# Gemini or LLaMA
|
314 |
return type("Obj", (), {"content": llm(prompt)})
|
315 |
else:
|
316 |
-
# OpenAI LangChain interface
|
317 |
return llm.invoke([{"role": "system", "content": prompt}])
|
318 |
|
319 |
-
|
320 |
# === App UI ===
|
321 |
|
322 |
st.title("🧬 DermBOT — Skin AI Assistant")
|
|
|
24 |
from langchain_community.vectorstores import Qdrant
|
25 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
26 |
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
27 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM
|
28 |
import nest_asyncio
|
29 |
|
30 |
torch.cuda.empty_cache()
|
|
|
36 |
|
37 |
|
38 |
# === Model Selection ===
|
39 |
+
available_models = ["GPT-4o", "LLaMA 4 Maverick", "Gemini 2.5 Pro","All"]
|
40 |
st.session_state["selected_model"] = st.sidebar.selectbox("Select LLM Model", available_models)
|
41 |
|
42 |
|
|
|
131 |
return response.text
|
132 |
|
133 |
llm = get_gemini_response
|
134 |
+
|
135 |
+
elif "All" in selected_model:
|
136 |
+
|
137 |
+
from groq import Groq
|
138 |
+
import google.generativeai as genai
|
139 |
+
genai.configure(api_key=st.secrets["GEMINI_API_KEY"])
|
140 |
+
pair_ranker = pipeline("text-classification", model="llm-blender/PairRM")
|
141 |
+
gen_fuser = pipeline("text-generation", model="llm-blender/gen_fuser_3b", max_length=2048, do_sample=False)
|
142 |
+
|
143 |
+
def get_all_model_responses(prompt):
|
144 |
+
openai_resp = ChatOpenAI(model="gpt-4o", temperature=0.2, api_key=st.secrets["OPENAI_API_KEY"]).invoke(
|
145 |
+
[{"role": "system", "content": prompt}]).content
|
146 |
+
|
147 |
+
gemini = genai.GenerativeModel("gemini-2.5-pro-exp-03-25")
|
148 |
+
gemini_resp = gemini.generate_content(prompt).text
|
149 |
+
|
150 |
+
llama = Groq(api_key=st.secrets["GROQ_API_KEY"])
|
151 |
+
llama_resp = llama.chat.completions.create(
|
152 |
+
model="meta-llama/llama-4-maverick-17b-128e-instruct",
|
153 |
+
messages=[{"role": "user", "content": prompt}],
|
154 |
+
temperature=1, max_completion_tokens=1024, top_p=1, stream=False
|
155 |
+
).choices[0].message.content
|
156 |
+
|
157 |
+
return [openai_resp, gemini_resp, llama_resp]
|
158 |
+
|
159 |
+
def rank_and_fuse(prompt, responses):
|
160 |
+
ranked = [(resp, pair_ranker(f"{prompt}\n\n{resp}")[0][1]['score']) for resp in responses]
|
161 |
+
ranked.sort(key=lambda x: x[1], reverse=True)
|
162 |
+
fusion_input = "\n\n".join([f"[Answer {i+1}]: {ans}" for i, (ans, _) in enumerate(ranked)])
|
163 |
+
return gen_fuser(f"Fuse these responses:\n{fusion_input}", return_full_text=False)[0]['generated_text']
|
164 |
+
|
165 |
|
166 |
else:
|
167 |
st.error("Unsupported model selected.")
|
|
|
325 |
|
326 |
|
327 |
#Reranker utility
|
328 |
+
def rerank_with_cohere(query, documents, top_n=5):
|
329 |
if not documents:
|
330 |
return []
|
331 |
+
raw_texts = [doc.page_content for doc in documents]
|
|
|
332 |
results = co.rerank(query=query, documents=raw_texts, top_n=min(top_n, len(raw_texts)), model="rerank-v3.5")
|
333 |
+
return [documents[result.index] for result in results]
|
334 |
+
|
335 |
+
|
336 |
+
|
337 |
+
|
338 |
+
|
339 |
+
pair_ranker = pipeline(
|
340 |
+
"text-classification",
|
341 |
+
model="llm-blender/PairRM",
|
342 |
+
tokenizer="llm-blender/PairRM",
|
343 |
+
return_all_scores=True
|
344 |
+
)
|
345 |
+
|
346 |
+
gen_fuser = pipeline(
|
347 |
+
"text-generation",
|
348 |
+
model="llm-blender/gen_fuser_3b",
|
349 |
+
tokenizer="llm-blender/gen_fuser_3b",
|
350 |
+
max_length=2048,
|
351 |
+
do_sample=False
|
352 |
+
)
|
353 |
+
|
354 |
|
355 |
# Final answer generation using reranked context
|
356 |
+
def get_reranked_response(query):
|
357 |
docs = retriever.get_relevant_documents(query)
|
358 |
reranked_docs = rerank_with_cohere(query, docs)
|
359 |
context = "\n\n".join([doc.page_content for doc in reranked_docs])
|
360 |
prompt = AI_PROMPT_TEMPLATE.format(question=query, context=context)
|
361 |
|
362 |
+
if selected_model == "All":
|
363 |
+
responses = get_all_model_responses(prompt)
|
364 |
+
fused = rank_and_fuse(prompt, responses)
|
365 |
+
return type("Obj", (), {"content": fused})
|
366 |
+
|
367 |
if callable(llm):
|
|
|
368 |
return type("Obj", (), {"content": llm(prompt)})
|
369 |
else:
|
|
|
370 |
return llm.invoke([{"role": "system", "content": prompt}])
|
371 |
|
|
|
372 |
# === App UI ===
|
373 |
|
374 |
st.title("🧬 DermBOT — Skin AI Assistant")
|