DermBOT / dermo.py
santhoshraghu's picture
Upload dermo.py
6e6ac11 verified
raw
history blame
8.82 kB
import streamlit as st
from PIL import Image
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision.models import vit_b_16, ViT_B_16_Weights
import pandas as pd
import io
import os
import base64
from fpdf import FPDF
from sqlalchemy import create_engine
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from sentence_transformers import SentenceTransformer
from langchain_community.vectorstores.pgvector import PGVector
from langchain_postgres import PGVector
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_community.vectorstores import Qdrant
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.embeddings import SentenceTransformerEmbeddings
import nest_asyncio
nest_asyncio.apply()
st.set_page_config(page_title="DermBOT", page_icon="🧬", layout="centered")
#os.environ["PGVECTOR_CONNECTION_STRING"] = "postgresql+psycopg2://postgres:postgres@localhost:5432/VectorDB"
# === Model Selection ===
available_models = ["OpenAI GPT-4o", "LLaMA 3", "Gemini Pro"]
st.session_state["selected_model"] = st.sidebar.selectbox("Select LLM Model", available_models)
# === Qdrant DB Setup ===
qdrant_client = QdrantClient(
url="https://2715ddd8-647f-40ee-bca4-9027d193e8aa.us-east-1-0.aws.cloud.qdrant.io",
api_key="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.HXzezXdWMFeeR16F7zvqgjzsqrcm8hqa-StXdToFP9Q"
)
collection_name = "ks_collection_1.5BE"
#embedding_model = SentenceTransformer("D:\DR\RAG\gte-Qwen2-1.5B-instruct", trust_remote_code=True)
#embedding_model.max_seq_length = 8192
#local_embedding = SentenceTransformerEmbeddings(model=embedding_model)
local_embedding = HuggingFaceEmbeddings(
model_name="D:/DR/RAG/gte-Qwen2-1.5B-instruct",
model_kwargs={"trust_remote_code": True, "device":"cpu"}
)
print(" Qwen2-1.5B local embedding model loaded.")
vector_store = Qdrant(
client=qdrant_client,
collection_name=collection_name,
embeddings=local_embedding
)
retriever = vector_store.as_retriever()
'''
# === Init LLM and Vector DB ===
CONNECTION_STRING = "postgresql+psycopg2://postgres:postgres@localhost:5432/VectorDB"
engine = create_engine(CONNECTION_STRING)
embedding_model = OpenAIEmbeddings(api_key=OPENAI_API_KEY)
'''
# Dynamically initialize LLM based on selection
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
selected_model = st.session_state["selected_model"]
if "OpenAI" in selected_model:
llm = ChatOpenAI(model="gpt-4o", temperature=0.2, api_key=OPENAI_API_KEY)
elif "LLaMA" in selected_model:
st.warning("LLaMA integration is not implemented yet.")
st.stop()
elif "Gemini" in selected_model:
st.warning("Gemini integration is not implemented yet.")
st.stop()
else:
st.error("Unsupported model selected.")
st.stop()
'''
vector_store = PGVector.from_existing_index(
embedding=embedding_model,
connection=engine,
collection_name="documents"
)
'''
#retriever = vector_store.as_retriever()
AI_PROMPT_TEMPLATE = """You are an AI-assisted Dermatology Chatbot, specializing in diagnosing and educating users about skin diseases.
You provide accurate, compassionate, and detailed explanations while using correct medical terminology.
Guidelines:
1. Symptoms - Explain in simple terms with proper medical definitions.
2. Causes - Include genetic, environmental, and lifestyle-related risk factors.
3. Medications & Treatments - Provide common prescription and over-the-counter treatments.
4. Warnings & Emergencies - Always recommend consulting a licensed dermatologist.
5. Emergency Note - If symptoms worsen or include difficulty breathing, **advise calling 911 immediately.
Query: {question}
Relevant Information: {context}
Answer:
"""
prompt_template = PromptTemplate(template=AI_PROMPT_TEMPLATE, input_variables=["question", "context"])
rag_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="stuff",
chain_type_kwargs={"prompt": prompt_template, "document_variable_name": "context"}
)
# === Class Names ===
multilabel_class_names = [
"Vesicle", "Papule", "Macule", "Plaque", "Abscess", "Pustule", "Bulla", "Patch",
"Nodule", "Ulcer", "Crust", "Erosion", "Excoriation", "Atrophy", "Exudate", "Purpura/Petechiae",
"Fissure", "Induration", "Xerosis", "Telangiectasia", "Scale", "Scar", "Friable", "Sclerosis",
"Pedunculated", "Exophytic/Fungating", "Warty/Papillomatous", "Dome-shaped", "Flat topped",
"Brown(Hyperpigmentation)", "Translucent", "White(Hypopigmentation)", "Purple", "Yellow",
"Black", "Erythema", "Comedo", "Lichenification", "Blue", "Umbilicated", "Poikiloderma",
"Salmon", "Wheal", "Acuminate", "Burrow", "Gray", "Pigmented", "Cyst"
]
multiclass_class_names = [
"systemic", "hair", "drug_reactions", "uriticaria", "acne", "light",
"autoimmune", "papulosquamous", "eczema", "skincancer",
"benign_tumors", "bacteria_parasetic_infections", "fungal_infections", "viral_skin_infections"
]
# === Load Models ===
class SkinViT(nn.Module):
def __init__(self, num_classes):
super(SkinViT, self).__init__()
self.model = vit_b_16(weights=ViT_B_16_Weights.DEFAULT)
in_features = self.model.heads[0].in_features
self.model.heads[0] = nn.Linear(in_features, num_classes)
def forward(self, x):
return self.model(x)
multilabel_model = torch.load("D:/DR/RAG/BestModels2703/skin_vit_fold10.pth", map_location='cpu')
multiclass_model = torch.load("D:/DR/RAG/BestModels2703/best_dermnet_vit.pth", map_location='cpu')
multilabel_model.eval()
multiclass_model.eval()
# === Session Init ===
if "messages" not in st.session_state:
st.session_state.messages = []
# === Image Processing Function ===
def run_inference(image):
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
input_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
probs_multi = torch.sigmoid(multilabel_model(input_tensor)).squeeze().numpy()
predicted_multi = [multilabel_class_names[i] for i, p in enumerate(probs_multi) if p > 0.5]
pred_idx = torch.argmax(multiclass_model(input_tensor), dim=1).item()
predicted_single = multiclass_class_names[pred_idx]
return predicted_multi, predicted_single
# === PDF Export ===
def export_chat_to_pdf(messages):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
for msg in messages:
role = "You" if msg["role"] == "user" else "AI"
pdf.multi_cell(0, 10, f"{role}: {msg['content']}\n")
buf = io.BytesIO()
pdf.output(buf)
buf.seek(0)
return buf
# === App UI ===
st.title("🧬 DermBOT — Skin AI Assistant")
st.caption(f"🧠 Using model: {selected_model}")
uploaded_file = st.file_uploader("Upload a skin image", type=["jpg", "jpeg", "png"])
if uploaded_file:
st.image(uploaded_file, caption="Uploaded image", use_column_width=True)
image = Image.open(uploaded_file).convert("RGB")
predicted_multi, predicted_single = run_inference(image)
# Show predictions clearly to the user
st.markdown(f" Skin Issues : {', '.join(predicted_multi)}")
st.markdown(f" Most Likely Diagnosis : {predicted_single}")
query = f"What are my treatment options for {predicted_multi} and {predicted_single}?"
st.session_state.messages.append({"role": "user", "content": query})
with st.spinner("Analyzing the image and retrieving response..."):
response = rag_chain.invoke(query)
st.session_state.messages.append({"role": "assistant", "content": response['result']})
with st.chat_message("assistant"):
st.markdown(response['result'])
# === Chat Interface ===
if prompt := st.chat_input("Ask a follow-up..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
response = llm.invoke([{"role": m["role"], "content": m["content"]} for m in st.session_state.messages])
st.session_state.messages.append({"role": "assistant", "content": response.content})
with st.chat_message("assistant"):
st.markdown(response.content)
# === PDF Button ===
if st.button("📄 Download Chat as PDF"):
pdf_file = export_chat_to_pdf(st.session_state.messages)
st.download_button("Download PDF", data=pdf_file, file_name="chat_history.pdf", mime="application/pdf")