File size: 8,824 Bytes
6e6ac11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import streamlit as st
from PIL import Image
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision.models import vit_b_16, ViT_B_16_Weights
import pandas as pd
import io
import os
import base64
from fpdf import FPDF
from sqlalchemy import create_engine
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from sentence_transformers import SentenceTransformer
from langchain_community.vectorstores.pgvector import PGVector
from langchain_postgres import PGVector
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_community.vectorstores import Qdrant
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.embeddings import SentenceTransformerEmbeddings



import nest_asyncio
nest_asyncio.apply()

st.set_page_config(page_title="DermBOT", page_icon="🧬", layout="centered")

#os.environ["PGVECTOR_CONNECTION_STRING"] = "postgresql+psycopg2://postgres:postgres@localhost:5432/VectorDB"

# === Model Selection ===
available_models = ["OpenAI GPT-4o", "LLaMA 3", "Gemini Pro"]
st.session_state["selected_model"] = st.sidebar.selectbox("Select LLM Model", available_models)


# === Qdrant DB Setup ===
qdrant_client = QdrantClient(
    url="https://2715ddd8-647f-40ee-bca4-9027d193e8aa.us-east-1-0.aws.cloud.qdrant.io",
    api_key="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.HXzezXdWMFeeR16F7zvqgjzsqrcm8hqa-StXdToFP9Q"
)
collection_name = "ks_collection_1.5BE"
#embedding_model = SentenceTransformer("D:\DR\RAG\gte-Qwen2-1.5B-instruct", trust_remote_code=True)
#embedding_model.max_seq_length = 8192
#local_embedding = SentenceTransformerEmbeddings(model=embedding_model)


local_embedding = HuggingFaceEmbeddings(
    model_name="D:/DR/RAG/gte-Qwen2-1.5B-instruct",
    model_kwargs={"trust_remote_code": True, "device":"cpu"}
)
print(" Qwen2-1.5B local embedding model loaded.")


vector_store = Qdrant(
    client=qdrant_client,
    collection_name=collection_name,
    embeddings=local_embedding
)
retriever = vector_store.as_retriever()

'''

# === Init LLM and Vector DB ===



CONNECTION_STRING = "postgresql+psycopg2://postgres:postgres@localhost:5432/VectorDB"

engine = create_engine(CONNECTION_STRING)

embedding_model = OpenAIEmbeddings(api_key=OPENAI_API_KEY)

'''
# Dynamically initialize LLM based on selection
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
selected_model = st.session_state["selected_model"]
if "OpenAI" in selected_model:
    llm = ChatOpenAI(model="gpt-4o", temperature=0.2, api_key=OPENAI_API_KEY)
elif "LLaMA" in selected_model:
    st.warning("LLaMA integration is not implemented yet.")
    st.stop()
elif "Gemini" in selected_model:
    st.warning("Gemini integration is not implemented yet.")
    st.stop()
else:
    st.error("Unsupported model selected.")
    st.stop()

'''

vector_store = PGVector.from_existing_index(

    embedding=embedding_model,

    connection=engine,

    collection_name="documents"

)

'''
#retriever = vector_store.as_retriever()

AI_PROMPT_TEMPLATE = """You are an AI-assisted Dermatology Chatbot, specializing in diagnosing and educating users about skin diseases.

You provide accurate, compassionate, and detailed explanations while using correct medical terminology.



Guidelines:

1. Symptoms - Explain in simple terms with proper medical definitions.

2. Causes - Include genetic, environmental, and lifestyle-related risk factors.

3. Medications & Treatments - Provide common prescription and over-the-counter treatments.

4. Warnings & Emergencies - Always recommend consulting a licensed dermatologist.

5. Emergency Note - If symptoms worsen or include difficulty breathing, **advise calling 911 immediately.



Query: {question}

Relevant Information: {context}

Answer:

"""
prompt_template = PromptTemplate(template=AI_PROMPT_TEMPLATE, input_variables=["question", "context"])

rag_chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=retriever,
    chain_type="stuff",
    chain_type_kwargs={"prompt": prompt_template, "document_variable_name": "context"}
)

# === Class Names ===
multilabel_class_names = [
    "Vesicle", "Papule", "Macule", "Plaque", "Abscess", "Pustule", "Bulla", "Patch",
    "Nodule", "Ulcer", "Crust", "Erosion", "Excoriation", "Atrophy", "Exudate", "Purpura/Petechiae",
    "Fissure", "Induration", "Xerosis", "Telangiectasia", "Scale", "Scar", "Friable", "Sclerosis",
    "Pedunculated", "Exophytic/Fungating", "Warty/Papillomatous", "Dome-shaped", "Flat topped",
    "Brown(Hyperpigmentation)", "Translucent", "White(Hypopigmentation)", "Purple", "Yellow",
    "Black", "Erythema", "Comedo", "Lichenification", "Blue", "Umbilicated", "Poikiloderma",
    "Salmon", "Wheal", "Acuminate", "Burrow", "Gray", "Pigmented", "Cyst"
]

multiclass_class_names = [
    "systemic", "hair", "drug_reactions", "uriticaria", "acne", "light",
    "autoimmune", "papulosquamous", "eczema", "skincancer",
    "benign_tumors", "bacteria_parasetic_infections", "fungal_infections", "viral_skin_infections"
]

# === Load Models ===
class SkinViT(nn.Module):
    def __init__(self, num_classes):
        super(SkinViT, self).__init__()
        self.model = vit_b_16(weights=ViT_B_16_Weights.DEFAULT)
        in_features = self.model.heads[0].in_features
        self.model.heads[0] = nn.Linear(in_features, num_classes)
    def forward(self, x):
        return self.model(x)

multilabel_model = torch.load("D:/DR/RAG/BestModels2703/skin_vit_fold10.pth", map_location='cpu')
multiclass_model = torch.load("D:/DR/RAG/BestModels2703/best_dermnet_vit.pth", map_location='cpu')
multilabel_model.eval()
multiclass_model.eval()

# === Session Init ===
if "messages" not in st.session_state:
    st.session_state.messages = []

# === Image Processing Function ===
def run_inference(image):
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5])
    ])
    input_tensor = transform(image).unsqueeze(0)
    with torch.no_grad():
        probs_multi = torch.sigmoid(multilabel_model(input_tensor)).squeeze().numpy()
        predicted_multi = [multilabel_class_names[i] for i, p in enumerate(probs_multi) if p > 0.5]
        pred_idx = torch.argmax(multiclass_model(input_tensor), dim=1).item()
        predicted_single = multiclass_class_names[pred_idx]
    return predicted_multi, predicted_single

# === PDF Export ===
def export_chat_to_pdf(messages):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", size=12)
    for msg in messages:
        role = "You" if msg["role"] == "user" else "AI"
        pdf.multi_cell(0, 10, f"{role}: {msg['content']}\n")
    buf = io.BytesIO()
    pdf.output(buf)
    buf.seek(0)
    return buf

# === App UI ===

st.title("🧬 DermBOT — Skin AI Assistant")
st.caption(f"🧠 Using model: {selected_model}")
uploaded_file = st.file_uploader("Upload a skin image", type=["jpg", "jpeg", "png"])

if uploaded_file:
    st.image(uploaded_file, caption="Uploaded image", use_column_width=True)
    image = Image.open(uploaded_file).convert("RGB")


    predicted_multi, predicted_single = run_inference(image)

    # Show predictions clearly to the user
    st.markdown(f" Skin Issues : {', '.join(predicted_multi)}")
    st.markdown(f" Most Likely Diagnosis : {predicted_single}")

    query = f"What are my treatment options for {predicted_multi} and {predicted_single}?"
    st.session_state.messages.append({"role": "user", "content": query})

    with st.spinner("Analyzing the image and retrieving response..."):
        response = rag_chain.invoke(query)
        st.session_state.messages.append({"role": "assistant", "content": response['result']})

    with st.chat_message("assistant"):
        st.markdown(response['result'])

# === Chat Interface ===
if prompt := st.chat_input("Ask a follow-up..."):
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    response = llm.invoke([{"role": m["role"], "content": m["content"]} for m in st.session_state.messages])
    st.session_state.messages.append({"role": "assistant", "content": response.content})
    with st.chat_message("assistant"):
        st.markdown(response.content)

# === PDF Button ===
if st.button("📄 Download Chat as PDF"):
    pdf_file = export_chat_to_pdf(st.session_state.messages)
    st.download_button("Download PDF", data=pdf_file, file_name="chat_history.pdf", mime="application/pdf")