File size: 4,583 Bytes
262d1c8 97d3016 e348d3e 97d3016 262d1c8 97d3016 954a751 97d3016 96c33c2 d0afb9d 97d3016 d0afb9d 97d3016 724f6b3 97d3016 262d1c8 97d3016 262d1c8 97d3016 954a751 97d3016 262d1c8 954a751 97d3016 88ef11a 23b0e90 97d3016 954a751 97d3016 954a751 97d3016 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import spaces
import torch
from peft import PeftModel
import transformers
import gradio as gr
import os
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
access_token = os.environ.get('HF_TOKEN')
tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", token=access_token)
BASE_MODEL = "meta-llama/Llama-2-7b-hf"
LORA_WEIGHTS = "DSMI/LLaMA-E"
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
print("Device: " + str(device))
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=False,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
low_cpu_mem_usage=True,
load_in_8bit=True,
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
print("Model: " + str(model))
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
if device != "cpu":
model.half()
model.eval()
if torch.__version__ >= "2":
model = torch.compile(model)
@spaces.GPU()
def evaluate(
instruction,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=2,
max_new_tokens=64,
**kwargs,
):
prompt = generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return output.split("### Response:")[1].strip()
g = gr.Interface(
fn=evaluate,
inputs=[
gr.components.Textbox(
lines=2, label="Instruction", placeholder="Tell me about alpacas."
),
gr.components.Textbox(lines=2, label="Input", placeholder="none"),
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
gr.components.Slider(
minimum=1, maximum=512, step=1, value=128, label="Max tokens"
),
],
outputs=[
gr.Textbox(
lines=5,
label="Output",
)
],
title="π¦ποΈ LLaMA-E",
description="LLaMA-E is a series of fine-tuned LLaMA model following the E-commerce instructions. It is developed by DSMI (http://dsmi.tech/) @ University of Technology Sydney, and trained on the 120k instruction set. This model is for academic research use only. For more details please contact: Kaize.Shi@uts.edu.au",
)
g.queue(concurrency_count=1)
g.launch() |