Add application file
Browse files
app.py
CHANGED
@@ -1,148 +1,107 @@
|
|
1 |
-
import spaces
|
2 |
-
import torch
|
3 |
-
from peft import PeftModel
|
4 |
-
import transformers
|
5 |
-
import gradio as gr
|
6 |
import os
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
|
13 |
-
access_token = os.environ.get('HF_TOKEN')
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
LORA_WEIGHTS = "DSMI/LLaMA-E"
|
19 |
|
20 |
-
if torch.cuda.is_available():
|
21 |
-
device = "cuda"
|
22 |
-
else:
|
23 |
-
device = "cpu"
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
load_in_8bit=False,
|
37 |
torch_dtype=torch.float16,
|
38 |
device_map="auto",
|
39 |
)
|
40 |
-
model = PeftModel.from_pretrained(
|
41 |
-
model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
|
42 |
-
)
|
43 |
-
elif device == "mps":
|
44 |
-
model = LlamaForCausalLM.from_pretrained(
|
45 |
-
BASE_MODEL,
|
46 |
-
device_map={"": device},
|
47 |
-
torch_dtype=torch.float16,
|
48 |
-
)
|
49 |
-
model = PeftModel.from_pretrained(
|
50 |
-
model,
|
51 |
-
LORA_WEIGHTS,
|
52 |
-
device_map={"": device},
|
53 |
-
torch_dtype=torch.float16,
|
54 |
-
)
|
55 |
-
else:
|
56 |
-
model = LlamaForCausalLM.from_pretrained(
|
57 |
-
BASE_MODEL,
|
58 |
-
device_map={"": device},
|
59 |
-
low_cpu_mem_usage=True
|
60 |
-
)
|
61 |
-
model = PeftModel.from_pretrained(
|
62 |
-
model,
|
63 |
-
LORA_WEIGHTS,
|
64 |
-
device_map={"": device},
|
65 |
-
)
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
def generate_prompt(instruction, input=None):
|
70 |
-
if input:
|
71 |
-
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
72 |
-
### Instruction:
|
73 |
-
{instruction}
|
74 |
-
### Input:
|
75 |
-
{input}
|
76 |
-
### Response:"""
|
77 |
-
else:
|
78 |
-
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
79 |
-
### Instruction:
|
80 |
-
{instruction}
|
81 |
-
### Response:"""
|
82 |
-
|
83 |
-
if device != "cpu":
|
84 |
-
model.half()
|
85 |
-
model.eval()
|
86 |
-
if torch.__version__ >= "2":
|
87 |
-
model = torch.compile(model)
|
88 |
-
|
89 |
-
@spaces.GPU()
|
90 |
-
def evaluate(
|
91 |
-
instruction,
|
92 |
-
input=None,
|
93 |
-
temperature=0.1,
|
94 |
-
top_p=0.75,
|
95 |
-
top_k=40,
|
96 |
-
num_beams=2,
|
97 |
-
max_new_tokens=64,
|
98 |
-
**kwargs,
|
99 |
-
):
|
100 |
-
prompt = generate_prompt(instruction, input)
|
101 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
102 |
-
input_ids = inputs["input_ids"].to(device)
|
103 |
-
generation_config = GenerationConfig(
|
104 |
-
temperature=temperature,
|
105 |
-
top_p=top_p,
|
106 |
-
top_k=top_k,
|
107 |
-
num_beams=num_beams,
|
108 |
-
**kwargs,
|
109 |
)
|
110 |
-
with torch.no_grad():
|
111 |
-
generation_output = model.generate(
|
112 |
-
input_ids=input_ids,
|
113 |
-
generation_config=generation_config,
|
114 |
-
return_dict_in_generate=True,
|
115 |
-
output_scores=True,
|
116 |
-
max_new_tokens=max_new_tokens,
|
117 |
-
)
|
118 |
-
s = generation_output.sequences[0]
|
119 |
-
output = tokenizer.decode(s)
|
120 |
-
return output.split("### Response:")[1].strip()
|
121 |
-
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
gr.
|
131 |
-
gr.
|
132 |
-
gr.
|
133 |
-
gr.
|
134 |
-
gr.
|
135 |
-
|
136 |
-
),
|
137 |
],
|
138 |
-
|
139 |
-
|
140 |
-
lines=5,
|
141 |
-
label="Output",
|
142 |
-
)
|
143 |
-
],
|
144 |
-
title="🦙🛍️ LLaMA-E",
|
145 |
-
description="LLaMA-E is a series of fine-tuned LLaMA model following the E-commerce instructions. It is developed by DSMI (http://dsmi.tech/) @ University of Technology Sydney, and trained on the 120k instruction set. This model is for academic research use only. For more details please contact: Kaize.Shi@uts.edu.au",
|
146 |
-
)
|
147 |
-
g.queue(concurrency_count=1)
|
148 |
-
g.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import json
|
3 |
+
import subprocess
|
4 |
+
from threading import Thread
|
5 |
|
6 |
+
import torch
|
7 |
+
import spaces
|
8 |
+
import gradio as gr
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
|
10 |
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
|
|
|
11 |
|
12 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
13 |
|
14 |
+
MODEL_ID = "meta-llama/Llama-2-7b-hf"
|
15 |
+
CHAT_TEMPLATE = os.environ.get("CHAT_TEMPLATE")
|
16 |
+
CONTEXT_LENGTH = int(os.environ.get("CONTEXT_LENGTH"))
|
17 |
+
COLOR = os.environ.get("COLOR")
|
18 |
+
DESCRIPTION = os.environ.get("DESCRIPTION")
|
19 |
LORA_WEIGHTS = "DSMI/LLaMA-E"
|
20 |
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
@spaces.GPU(duration=120)
|
23 |
+
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
24 |
+
# Format history with a given chat template
|
25 |
+
if CHAT_TEMPLATE == "Auto":
|
26 |
+
stop_tokens = [tokenizer.eos_token_id]
|
27 |
+
instruction = []
|
28 |
+
for user, assistant in history:
|
29 |
+
instruction.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
30 |
+
instruction.append({"role": "user", "content": message})
|
31 |
+
elif CHAT_TEMPLATE == "ChatML":
|
32 |
+
stop_tokens = ["<|endoftext|>", "<|im_end|>"]
|
33 |
+
instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n'
|
34 |
+
for user, assistant in history:
|
35 |
+
instruction += '<|im_start|>user\n' + user + '\n<|im_end|>\n<|im_start|>assistant\n' + assistant
|
36 |
+
instruction += '\n<|im_start|>user\n' + message + '\n<|im_end|>\n<|im_start|>assistant\n'
|
37 |
+
elif CHAT_TEMPLATE == "Mistral Instruct":
|
38 |
+
stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "]
|
39 |
+
instruction = '<s>[INST] ' + system_prompt
|
40 |
+
for user, assistant in history:
|
41 |
+
instruction += user + ' [/INST] ' + assistant + '</s>[INST]'
|
42 |
+
instruction += ' ' + message + ' [/INST]'
|
43 |
+
else:
|
44 |
+
raise Exception("Incorrect chat template, select 'ChatML' or 'Mistral Instruct'")
|
45 |
+
print(instruction)
|
46 |
+
|
47 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
48 |
+
enc = tokenizer([instruction], return_tensors="pt", padding=True, truncation=True)
|
49 |
+
input_ids, attention_mask = enc.input_ids, enc.attention_mask
|
50 |
|
51 |
+
if input_ids.shape[1] > CONTEXT_LENGTH:
|
52 |
+
input_ids = input_ids[:, -CONTEXT_LENGTH:]
|
53 |
|
54 |
+
generate_kwargs = dict(
|
55 |
+
{"input_ids": input_ids.to(device), "attention_mask": attention_mask.to(device)},
|
56 |
+
streamer=streamer,
|
57 |
+
do_sample=True,
|
58 |
+
temperature=temperature,
|
59 |
+
max_new_tokens=max_new_tokens,
|
60 |
+
top_k=top_k,
|
61 |
+
repetition_penalty=repetition_penalty,
|
62 |
+
top_p=top_p
|
63 |
+
)
|
64 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
65 |
+
t.start()
|
66 |
+
outputs = []
|
67 |
+
for new_token in streamer:
|
68 |
+
outputs.append(new_token)
|
69 |
+
if new_token in stop_tokens:
|
70 |
+
break
|
71 |
+
yield "".join(outputs)
|
72 |
+
|
73 |
+
|
74 |
+
# Load model
|
75 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
76 |
+
quantization_config = BitsAndBytesConfig(
|
77 |
+
load_in_4bit=False,
|
78 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
79 |
+
)
|
80 |
+
tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", token=access_token)
|
81 |
+
model = LlamaForCausalLM.from_pretrained(
|
82 |
+
MODEL_ID,
|
83 |
load_in_8bit=False,
|
84 |
torch_dtype=torch.float16,
|
85 |
device_map="auto",
|
86 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
model = PeftModel.from_pretrained(
|
89 |
+
model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
# Create Gradio interface
|
93 |
+
gr.ChatInterface(
|
94 |
+
predict,
|
95 |
+
title= "🦙🛍️ LLaMA-E",
|
96 |
+
description=DESCRIPTION,
|
97 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False),
|
98 |
+
additional_inputs=[
|
99 |
+
gr.Textbox("You are HelpingAI a emotional AI always answer my question in HelpingAI style", label="System prompt"),
|
100 |
+
gr.Slider(0, 1, 0.8, label="Temperature"),
|
101 |
+
gr.Slider(128, 4096, 1024, label="Max new tokens"),
|
102 |
+
gr.Slider(1, 80, 40, label="Top K sampling"),
|
103 |
+
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
|
104 |
+
gr.Slider(0, 1, 0.95, label="Top P sampling"),
|
|
|
105 |
],
|
106 |
+
theme=gr.themes.Soft(primary_hue=COLOR),
|
107 |
+
).queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|