GH29BERT / tape /training.py
KeXing
Upload 26 files
212111c
import typing
import os
import logging
from timeit import default_timer as timer
import json
from pathlib import Path
import inspect
import pickle as pkl
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from .optimization import WarmupLinearSchedule
from . import utils
from . import errors
from . import visualization
from .registry import registry
from .models.modeling_utils import ProteinModel
try:
from apex import amp
import amp_C
import apex_C
from apex.amp import _amp_state
from apex.parallel.distributed import flat_dist_call
from apex.parallel.distributed import DistributedDataParallel as DDP
APEX_FOUND = True
except ImportError:
APEX_FOUND = False
logger = logging.getLogger(__name__)
MetricsDict = typing.Dict[str, float]
LossAndMetrics = typing.Tuple[float, MetricsDict]
OutputDict = typing.Dict[str, typing.Any]
class ForwardRunner:
def __init__(self,
model: ProteinModel,
device: torch.device = torch.device('cuda:0'),
n_gpu: int = 1,
fp16: bool = False,
local_rank: int = -1):
self.model = model
self.device = device
self.n_gpu = n_gpu
self.fp16 = fp16
self.local_rank = local_rank
forward_arg_keys = inspect.getfullargspec(model.forward).args
forward_arg_keys = forward_arg_keys[1:] # remove self argument
self._forward_arg_keys = forward_arg_keys
assert 'input_ids' in self._forward_arg_keys
def initialize_distributed_model(self):
if self.local_rank != -1:
if not self.fp16:
self.model = DDP(self.model)
else:
flat_dist_call([param.data for param in self.model.parameters()],
torch.distributed.broadcast, (0,))
elif self.n_gpu > 1:
self.model = nn.DataParallel(self.model)
def forward(self,
batch: typing.Dict[str, torch.Tensor],
return_outputs: bool = False,
no_loss: bool = False):
# Filter out batch items that aren't used in this model
# Requires that dataset keys match the forward args of the model
# Useful if some elements of the data are only used by certain models
# e.g. PSSMs / MSAs and other evolutionary data
batch = {name: tensor for name, tensor in batch.items()
if name in self._forward_arg_keys}
if self.device.type == 'cuda':
batch = {name: tensor.cuda(device=self.device, non_blocking=True)
for name, tensor in batch.items()}
outputs = self.model(**batch)
if no_loss:
return outputs
if isinstance(outputs[0], tuple):
# model also returned metrics
loss, metrics = outputs[0]
else:
# no metrics
loss = outputs[0]
metrics = {}
if self.n_gpu > 1: # pytorch DataDistributed doesn't mean scalars
loss = loss.mean()
metrics = {name: metric.mean() for name, metric in metrics.items()}
if return_outputs:
return loss, metrics, outputs
else:
return loss, metrics
def train(self):
self.model.train()
return self
def eval(self):
self.model.eval()
return self
class BackwardRunner(ForwardRunner):
def __init__(self,
model: ProteinModel,
optimizer: optim.Optimizer, # type: ignore
gradient_accumulation_steps: int = 1,
device: torch.device = torch.device('cuda:0'),
n_gpu: int = 1,
fp16: bool = False,
local_rank: int = -1,
max_grad_norm: float = 1.0,
warmup_steps: int = 0,
num_train_optimization_steps: int = 1000000):
super().__init__(model, device, n_gpu, fp16, local_rank)
self.optimizer = optimizer
self.max_grad_norm = max_grad_norm
self._global_step = 0
self._local_rank = local_rank
self._overflow_buf = torch.cuda.IntTensor([0]) # type: ignore
self.gradient_accumulation_steps = gradient_accumulation_steps
self._delay_accumulation = fp16 and local_rank != -1
self.scheduler = WarmupLinearSchedule(
self.optimizer, warmup_steps, num_train_optimization_steps)
def initialize_fp16(self):
if self.fp16:
self.model, self.optimizer = amp.initialize(
self.model, self.optimizer, opt_level="O2", loss_scale="dynamic",
master_weights=True)
_amp_state.loss_scalers[0]._loss_scale = 2 ** 20
def resume_from_checkpoint(self, checkpoint_dir: str) -> int:
checkpoint = torch.load(
os.path.join(checkpoint_dir, 'checkpoint.bin'), map_location=self.device)
self.optimizer.load_state_dict(checkpoint['optimizer'])
if self.fp16:
self.optimizer._lazy_init_maybe_master_weights()
self.optimizer._amp_stash.lazy_init_called = True
self.optimizer.load_state_dict(checkpoint['optimizer'])
for param, saved in zip(
amp.master_params(self.optimizer), checkpoint['master params']):
param.data.copy_(saved.data)
amp.load_state_dict(checkpoint['amp'])
self.scheduler.load_state_dict(checkpoint['scheduler'])
start_epoch = checkpoint['epoch'] + 1
return start_epoch
def save_state(self, save_directory: typing.Union[str, Path], epoch_id: int):
save_directory = Path(save_directory)
if not save_directory.exists():
save_directory.mkdir()
else:
assert save_directory.is_dir(), "Save path should be a directory"
model_to_save = getattr(self.model, 'module', self.model)
model_to_save.save_pretrained(save_directory)
optimizer_state: typing.Dict[str, typing.Any] = {
'optimizer': self.optimizer.state_dict(),
'scheduler': self.scheduler.state_dict(),
'epoch': epoch_id}
if APEX_FOUND:
optimizer_state['master params'] = list(amp.master_params(self.optimizer))
try:
optimizer_state['amp'] = amp.state_dict()
except AttributeError:
pass
torch.save(optimizer_state, save_directory / 'checkpoint.bin')
def backward(self, loss) -> None:
if not self._delay_accumulation:
loss = loss / self.gradient_accumulation_steps
if self.fp16:
with amp.scale_loss(loss, self.optimizer,
delay_overflow_check=self._delay_accumulation) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
def step(self) -> None:
nn.utils.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
if self._local_rank == -1:
self._step()
elif not self.fp16:
# TODO: Can you do this allreduce after accumulation also?
self._step()
else:
self._step_distributed_fp16()
def _step(self) -> None:
self.optimizer.step()
if self.scheduler is not None:
self.scheduler.step() # type: ignore
self._global_step += 1
def _step_distributed_fp16(self) -> None:
# manually allreduce gradients after all accumulation steps
# check for Inf/NaN
# 1. allocate an uninitialized buffer for flattened gradient
scaler = _amp_state.loss_scalers[0]
master_grads = [p.grad for p in amp.master_params(self.optimizer) if p.grad is not None]
flat_grad_size = sum(p.numel() for p in master_grads)
# allreduce_dtype = torch.float16 if args.allreduce_post_accumulation_fp16 else \
# torch.float32
allreduce_dtype = torch.float16
flat_raw = torch.empty(flat_grad_size, device='cuda', dtype=allreduce_dtype)
# 2. combine unflattening and predivision of unscaled 'raw' gradient
allreduced_views = apex_C.unflatten(flat_raw, master_grads)
self._overflow_buf.zero_()
amp_C.multi_tensor_scale(
65536,
self._overflow_buf,
[master_grads, allreduced_views],
scaler.loss_scale() / (
torch.distributed.get_world_size() * self.gradient_accumulation_steps))
# 3. sum gradient across ranks. Because of the predivision, this averages the gradient
torch.distributed.all_reduce(flat_raw)
# 4. combine unscaling and unflattening of allreduced gradient
self._overflow_buf.zero_()
amp_C.multi_tensor_scale(
65536,
self._overflow_buf,
[allreduced_views, master_grads],
1. / scaler.loss_scale())
# 5. update loss scale
scaler = _amp_state.loss_scalers[0]
old_overflow_buf = scaler._overflow_buf
scaler._overflow_buf = self._overflow_buf
had_overflow = scaler.update_scale()
scaler._overfloat_buf = old_overflow_buf
# 6. call optimizer step function
if had_overflow == 0:
self._step()
else:
# Overflow detected, print message and clear gradients
logger.info(f"Gradient overflow. Skipping step, reducing loss scale to "
f"{scaler.loss_scale()}")
if _amp_state.opt_properties.master_weights:
for param in self.optimizer._amp_stash.all_fp32_from_fp16_params:
param.grad = None
for param in self.model.parameters():
param.grad = None
@property
def global_step(self) -> int:
return self._global_step
def run_train_epoch(epoch_id: int,
train_loader: DataLoader,
runner: BackwardRunner,
viz: typing.Optional[visualization.TAPEVisualizer] = None,
num_log_iter: int = 20,
gradient_accumulation_steps: int = 1,
num_steps_per_epoch: int = -1) -> LossAndMetrics:
if viz is None:
viz = visualization.DummyVisualizer()
smoothing = 1 - 1 / num_log_iter
accumulator = utils.MetricsAccumulator(smoothing)
torch.set_grad_enabled(True)
runner.train()
def make_log_str(step: int, time: float) -> str:
ep_percent = epoch_id + step / len(train_loader)
if runner.scheduler is not None:
curr_lr = runner.scheduler.get_lr()[0] # type: ignore
else:
curr_lr = runner.optimizer.param_groups[0]['lr']
print_str = []
print_str.append(f"[Ep: {ep_percent:.2f}]")
print_str.append(f"[Iter: {runner.global_step}]")
print_str.append(f"[Time: {time:5.2f}s]")
print_str.append(f"[Loss: {accumulator.loss():.5g}]")
for name, value in accumulator.metrics().items():
print_str.append(f"[{name.capitalize()}: {value:.5g}]")
print_str.append(f"[LR: {curr_lr:.5g}]")
return ''.join(print_str)
start_t = timer()
for step, batch in enumerate(train_loader):
loss, metrics = runner.forward(batch) # type: ignore
runner.backward(loss)
accumulator.update(loss, metrics, step=False)
if (step + 1) % gradient_accumulation_steps == 0:
runner.step()
viz.log_metrics(accumulator.step(), "train", runner.global_step)
if runner.global_step % num_log_iter == 0:
end_t = timer()
logger.info(make_log_str(step, end_t - start_t))
start_t = end_t
if num_steps_per_epoch != -1 and (step + 1) > num_steps_per_epoch:
break
final_print_str = f"Train: [Loss: {accumulator.final_loss():.5g}]"
for name, value in accumulator.final_metrics().items():
final_print_str += f"[{name.capitalize()}: {value:.5g}]"
logger.info(final_print_str)
return accumulator.final_loss(), accumulator.final_metrics()
def run_valid_epoch(epoch_id: int,
valid_loader: DataLoader,
runner: ForwardRunner,
viz: typing.Optional[visualization.TAPEVisualizer] = None,
is_master: bool = True,
val_check_frac: float = 1.0) -> typing.Tuple[float, typing.Dict[str, float]]:
num_batches = len(valid_loader)
num_batches_to_run = int(num_batches * val_check_frac)
accumulator = utils.MetricsAccumulator()
torch.set_grad_enabled(False)
runner.eval()
for idx, batch in enumerate(tqdm(valid_loader, desc='Running Eval', total=num_batches_to_run,
disable=not is_master, leave=False)):
loss, metrics = runner.forward(batch) # type: ignore
accumulator.update(loss, metrics)
if idx>num_batches_to_run:
break
# Reduce loss across all processes if multiprocessing
eval_loss = utils.reduce_scalar(accumulator.final_loss())
metrics = {name: utils.reduce_scalar(value)
for name, value in accumulator.final_metrics().items()}
print_str = f"Evaluation: [Loss: {eval_loss:.5g}]"
for name, value in metrics.items():
print_str += f"[{name.capitalize()}: {value:.5g}]"
metrics['loss'] = eval_loss
if viz is not None:
viz.log_metrics(metrics, "val", getattr(runner, 'global_step', epoch_id))
logger.info(print_str)
return eval_loss, metrics
def _get_outputs_to_save(batch, outputs):
targets = batch['targets'].cpu().numpy()
outputs = outputs.cpu().numpy()
protein_length = batch['protein_length'].sum(1).cpu().numpy()
reshaped_output = []
for target, output, plength in zip(targets, outputs, protein_length):
output_slices = tuple(slice(1, plength - 1) if dim == protein_length.max() else
slice(0, dim) for dim in output.shape)
output = output[output_slices]
target = target[output_slices]
reshaped_output.append((target, output))
reshaped_output
def run_eval_epoch(eval_loader: DataLoader,
runner: ForwardRunner,
is_master: bool = True) -> typing.List[typing.Dict[str, typing.Any]]:
torch.set_grad_enabled(False)
runner.eval()
save_outputs = []
for batch in tqdm(eval_loader, desc='Evaluation', total=len(eval_loader),
disable=not is_master):
loss, metrics, outputs = runner.forward(batch, return_outputs=True) # type: ignore
predictions = outputs[1].cpu().numpy()
targets = batch['targets'].cpu().numpy()
for pred, target in zip(predictions, targets):
save_outputs.append({'prediction': pred, 'target': target})
return save_outputs
def run_train(model_type: str,
task: str,
learning_rate: float = 1e-4,
batch_size: int = 1024,
num_train_epochs: int = 10,
num_log_iter: int = 20,
fp16: bool = False,
warmup_steps: int = 10000,
gradient_accumulation_steps: int = 1,
loss_scale: int = 0,
max_grad_norm: float = 1.0,
exp_name: typing.Optional[str] = None,
from_pretrained: typing.Optional[str] = None,
log_dir: str = './logs',
eval_freq: int = 1,
save_freq: typing.Union[int, str] = 1,
model_config_file: typing.Optional[str] = None,
data_dir: str = './data',
output_dir: str = './results',
no_cuda: bool = False,
seed: int = 42,
local_rank: int = -1,
tokenizer: str = 'iupac',
num_workers: int = 8,
debug: bool = False,
log_level: typing.Union[str, int] = logging.INFO,
patience: int = -1,
resume_from_checkpoint: bool = False,
model_args = None,
num_steps_per_epoch: int = -1,
val_check_frac: float = 1.0) -> None:
# SETUP AND LOGGING CODE #
input_args = locals()
device, n_gpu, is_master = utils.setup_distributed(
local_rank, no_cuda)
exp_dir = utils.get_expname(exp_name, task, model_type)
save_path = Path(output_dir) / exp_dir
if is_master:
# save all the hidden parameters.
save_path.mkdir(parents=True, exist_ok=True)
with (save_path / 'args.json').open('w') as f:
json.dump(input_args, f)
utils.barrier_if_distributed()
utils.setup_logging(local_rank, save_path, log_level)
utils.set_random_seeds(seed, n_gpu)
train_dataset = utils.setup_dataset(task, data_dir, 'train', tokenizer)
valid_dataset = utils.setup_dataset(task, data_dir, 'valid', tokenizer)
train_loader = utils.setup_loader(
train_dataset, batch_size, local_rank, n_gpu,
gradient_accumulation_steps, num_workers)
valid_loader = utils.setup_loader(
valid_dataset, batch_size, local_rank, n_gpu,
gradient_accumulation_steps, num_workers)
num_train_optimization_steps = utils.get_num_train_optimization_steps(
train_dataset, batch_size, num_train_epochs)
model = registry.get_task_model(model_type, task, model_config_file, from_pretrained, model_args)
model = model.to(device)
optimizer = utils.setup_optimizer(model, learning_rate)
viz = visualization.get(log_dir, exp_dir, local_rank, debug=debug)
viz.log_config(input_args)
viz.log_config(model.config.to_dict())
viz.watch(model)
logger.info(
f"device: {device} "
f"n_gpu: {n_gpu}, "
f"distributed_training: {local_rank != -1}, "
f"16-bits training: {fp16}")
runner = BackwardRunner(
model, optimizer, gradient_accumulation_steps, device, n_gpu,
fp16, local_rank, max_grad_norm, warmup_steps, num_train_optimization_steps)
runner.initialize_fp16()
if resume_from_checkpoint:
assert from_pretrained is not None
start_epoch = runner.resume_from_checkpoint(from_pretrained)
else:
start_epoch = 0
runner.initialize_distributed_model()
num_train_optimization_steps = utils.get_num_train_optimization_steps(
train_dataset, batch_size, num_train_epochs)
is_master = local_rank in (-1, 0)
if isinstance(save_freq, str) and save_freq != 'improvement':
raise ValueError(
f"Only recongized string value for save_freq is 'improvement'"
f", received: {save_freq}")
if save_freq == 'improvement' and eval_freq <= 0:
raise ValueError("Cannot set save_freq to 'improvement' and eval_freq < 0")
num_trainable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Batch size = %d", batch_size)
logger.info(" Num epochs = %d", num_train_epochs)
logger.info(" Num train steps = %d", num_train_optimization_steps)
logger.info(" Num parameters = %d", num_trainable_parameters)
best_val_loss = float('inf')
num_evals_no_improvement = 0
def do_save(epoch_id: int, num_evals_no_improvement: int) -> bool:
if not is_master:
return False
if isinstance(save_freq, int):
return ((epoch_id + 1) % save_freq == 0) or ((epoch_id + 1) == num_train_epochs)
else:
return num_evals_no_improvement == 0
utils.barrier_if_distributed()
# ACTUAL TRAIN/EVAL LOOP #
with utils.wrap_cuda_oom_error(local_rank, batch_size, n_gpu, gradient_accumulation_steps):
for epoch_id in range(start_epoch, num_train_epochs):
run_train_epoch(epoch_id, train_loader, runner,
viz, num_log_iter, gradient_accumulation_steps, num_steps_per_epoch)
if eval_freq > 0 and (epoch_id + 1) % eval_freq == 0:
val_loss, _ = run_valid_epoch(epoch_id, valid_loader, runner, viz, is_master, val_check_frac)
if val_loss < best_val_loss:
best_val_loss = val_loss
num_evals_no_improvement = 0
else:
num_evals_no_improvement += 1
# Save trained model
if do_save(epoch_id, num_evals_no_improvement):
logger.info("** ** * Saving trained model ** ** * ")
# Only save the model itself
runner.save_state(save_path, epoch_id)
logger.info(f"Saving model checkpoint to {save_path}")
utils.barrier_if_distributed()
if patience > 0 and num_evals_no_improvement >= patience:
logger.info(f"Finished training at epoch {epoch_id} because no "
f"improvement for {num_evals_no_improvement} epochs.")
logger.log(35, f"Best Val Loss: {best_val_loss}")
if local_rank != -1:
# If you're distributed, raise this error. It sends a signal to
# the master process which lets it kill other processes and terminate
# without actually reporting an error. See utils/distributed_utils.py
# for the signal handling code.
raise errors.EarlyStopping
else:
break
logger.info(f"Finished training after {num_train_epochs} epochs.")
if best_val_loss != float('inf'):
logger.log(35, f"Best Val Loss: {best_val_loss}")
def run_eval(model_type: str,
task: str,
from_pretrained: str,
split: str = 'test',
batch_size: int = 1024,
model_config_file: typing.Optional[str] = None,
data_dir: str = './data',
no_cuda: bool = False,
seed: int = 42,
tokenizer: str = 'iupac',
num_workers: int = 8,
debug: bool = False,
metrics: typing.Tuple[str, ...] = (),
log_level: typing.Union[str, int] = logging.INFO) -> typing.Dict[str, float]:
local_rank = -1 # TAPE does not support torch.distributed.launch for evaluation
device, n_gpu, is_master = utils.setup_distributed(local_rank, no_cuda)
utils.setup_logging(local_rank, save_path=None, log_level=log_level)
utils.set_random_seeds(seed, n_gpu)
pretrained_dir = Path(from_pretrained)
logger.info(
f"device: {device} "
f"n_gpu: {n_gpu}")
model = registry.get_task_model(model_type, task, model_config_file, from_pretrained)
model = model.to(device)
runner = ForwardRunner(model, device, n_gpu)
runner.initialize_distributed_model()
valid_dataset = utils.setup_dataset(task, data_dir, split, tokenizer)
valid_loader = utils.setup_loader(
valid_dataset, batch_size, local_rank, n_gpu,
1, num_workers)
metric_functions = [registry.get_metric(name) for name in metrics]
save_outputs = run_eval_epoch(valid_loader, runner, is_master)
target = [el['target'] for el in save_outputs]
prediction = [el['prediction'] for el in save_outputs]
metrics_to_save = {name: metric(target, prediction)
for name, metric in zip(metrics, metric_functions)}
logger.info(''.join(f'{name}: {val}' for name, val in metrics_to_save.items()))
with (pretrained_dir / 'results.pkl').open('wb') as f:
pkl.dump((metrics_to_save, save_outputs), f)
return metrics_to_save
def run_embed(model_type: str,
data_file: str,
out_file: str,
from_pretrained: str,
batch_size: int = 1024,
model_config_file: typing.Optional[str] = None,
full_sequence_embed: bool = False,
no_cuda: bool = False,
seed: int = 42,
tokenizer: str = 'iupac',
num_workers: int = 8,
log_level: typing.Union[str, int] = logging.INFO) -> None:
local_rank = -1 # TAPE does not support torch.distributed.launch for embedding
device, n_gpu, is_master = utils.setup_distributed(local_rank, no_cuda)
utils.setup_logging(local_rank, save_path=None, log_level=log_level)
utils.set_random_seeds(seed, n_gpu)
logger.info(
f"device: {device} "
f"n_gpu: {n_gpu}")
task_spec = registry.get_task_spec('embed')
model = registry.get_task_model(
model_type, task_spec.name, model_config_file, from_pretrained)
model = model.to(device)
runner = ForwardRunner(model, device, n_gpu)
runner.initialize_distributed_model()
runner.eval()
torch.set_grad_enabled(False)
dataset = task_spec.dataset(data_file, tokenizer=tokenizer) # type: ignore
valid_loader = utils.setup_loader(dataset, batch_size, local_rank, n_gpu, 1, num_workers)
with utils.IncrementalNPZ(out_file) as npzfile:
with utils.wrap_cuda_oom_error(local_rank, batch_size, n_gpu):
for batch in tqdm(valid_loader, total=len(valid_loader)):
outputs = runner.forward(batch, no_loss=True)
ids = batch['ids']
sequence_embed = outputs[0]
pooled_embed = outputs[1]
sequence_lengths = batch['input_mask'].sum(1)
sequence_embed = sequence_embed.cpu().numpy()
pooled_embed = pooled_embed.cpu().numpy()
sequence_lengths = sequence_lengths.cpu().numpy()
for seqembed, poolembed, length, protein_id in zip(
sequence_embed, pooled_embed, sequence_lengths, ids):
seqembed = seqembed[:length]
arrays = {'pooled': poolembed}
if not full_sequence_embed:
# avgpool across the sequence
arrays['avg'] = seqembed.mean(0)
else:
arrays['seq'] = seqembed
to_save = {protein_id: arrays}
npzfile.savez(**to_save)