File size: 26,325 Bytes
212111c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
import typing
import os
import logging
from timeit import default_timer as timer
import json
from pathlib import Path
import inspect
import pickle as pkl

from tqdm import tqdm
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from .optimization import WarmupLinearSchedule

from . import utils
from . import errors
from . import visualization
from .registry import registry
from .models.modeling_utils import ProteinModel

try:
    from apex import amp
    import amp_C
    import apex_C
    from apex.amp import _amp_state
    from apex.parallel.distributed import flat_dist_call
    from apex.parallel.distributed import DistributedDataParallel as DDP
    APEX_FOUND = True
except ImportError:
    APEX_FOUND = False

logger = logging.getLogger(__name__)

MetricsDict = typing.Dict[str, float]
LossAndMetrics = typing.Tuple[float, MetricsDict]
OutputDict = typing.Dict[str, typing.Any]


class ForwardRunner:

    def __init__(self,
                 model: ProteinModel,
                 device: torch.device = torch.device('cuda:0'),
                 n_gpu: int = 1,
                 fp16: bool = False,
                 local_rank: int = -1):

        self.model = model
        self.device = device
        self.n_gpu = n_gpu
        self.fp16 = fp16
        self.local_rank = local_rank

        forward_arg_keys = inspect.getfullargspec(model.forward).args
        forward_arg_keys = forward_arg_keys[1:]  # remove self argument
        self._forward_arg_keys = forward_arg_keys
        assert 'input_ids' in self._forward_arg_keys

    def initialize_distributed_model(self):
        if self.local_rank != -1:
            if not self.fp16:
                self.model = DDP(self.model)
            else:
                flat_dist_call([param.data for param in self.model.parameters()],
                               torch.distributed.broadcast, (0,))
        elif self.n_gpu > 1:
            self.model = nn.DataParallel(self.model)

    def forward(self,
                batch: typing.Dict[str, torch.Tensor],
                return_outputs: bool = False,
                no_loss: bool = False):
        # Filter out batch items that aren't used in this model
        # Requires that dataset keys match the forward args of the model
        # Useful if some elements of the data are only used by certain models
        # e.g. PSSMs / MSAs and other evolutionary data
        batch = {name: tensor for name, tensor in batch.items()
                 if name in self._forward_arg_keys}
        if self.device.type == 'cuda':
            batch = {name: tensor.cuda(device=self.device, non_blocking=True)
                     for name, tensor in batch.items()}

        outputs = self.model(**batch)

        if no_loss:
            return outputs

        if isinstance(outputs[0], tuple):
            # model also returned metrics
            loss, metrics = outputs[0]
        else:
            # no metrics
            loss = outputs[0]
            metrics = {}

        if self.n_gpu > 1:  # pytorch DataDistributed doesn't mean scalars
            loss = loss.mean()
            metrics = {name: metric.mean() for name, metric in metrics.items()}

        if return_outputs:
            return loss, metrics, outputs
        else:
            return loss, metrics

    def train(self):
        self.model.train()
        return self

    def eval(self):
        self.model.eval()
        return self


class BackwardRunner(ForwardRunner):

    def __init__(self,
                 model: ProteinModel,
                 optimizer: optim.Optimizer,  # type: ignore
                 gradient_accumulation_steps: int = 1,
                 device: torch.device = torch.device('cuda:0'),
                 n_gpu: int = 1,
                 fp16: bool = False,
                 local_rank: int = -1,
                 max_grad_norm: float = 1.0,
                 warmup_steps: int = 0,
                 num_train_optimization_steps: int = 1000000):

        super().__init__(model, device, n_gpu, fp16, local_rank)
        self.optimizer = optimizer
        self.max_grad_norm = max_grad_norm
        self._global_step = 0
        self._local_rank = local_rank
        self._overflow_buf = torch.cuda.IntTensor([0])  # type: ignore
        self.gradient_accumulation_steps = gradient_accumulation_steps
        self._delay_accumulation = fp16 and local_rank != -1

        self.scheduler = WarmupLinearSchedule(
            self.optimizer, warmup_steps, num_train_optimization_steps)

    def initialize_fp16(self):
        if self.fp16:
            self.model, self.optimizer = amp.initialize(
                self.model, self.optimizer, opt_level="O2", loss_scale="dynamic",
                master_weights=True)
            _amp_state.loss_scalers[0]._loss_scale = 2 ** 20

    def resume_from_checkpoint(self, checkpoint_dir: str) -> int:
        checkpoint = torch.load(
            os.path.join(checkpoint_dir, 'checkpoint.bin'), map_location=self.device)
        self.optimizer.load_state_dict(checkpoint['optimizer'])
        if self.fp16:
            self.optimizer._lazy_init_maybe_master_weights()
            self.optimizer._amp_stash.lazy_init_called = True
            self.optimizer.load_state_dict(checkpoint['optimizer'])
            for param, saved in zip(
                    amp.master_params(self.optimizer), checkpoint['master params']):
                param.data.copy_(saved.data)
            amp.load_state_dict(checkpoint['amp'])
        self.scheduler.load_state_dict(checkpoint['scheduler'])
        start_epoch = checkpoint['epoch'] + 1
        return start_epoch

    def save_state(self, save_directory: typing.Union[str, Path], epoch_id: int):
        save_directory = Path(save_directory)
        if not save_directory.exists():
            save_directory.mkdir()
        else:
            assert save_directory.is_dir(), "Save path should be a directory"
        model_to_save = getattr(self.model, 'module', self.model)
        model_to_save.save_pretrained(save_directory)
        optimizer_state: typing.Dict[str, typing.Any] = {
            'optimizer': self.optimizer.state_dict(),
            'scheduler': self.scheduler.state_dict(),
            'epoch': epoch_id}
        if APEX_FOUND:
            optimizer_state['master params'] = list(amp.master_params(self.optimizer))
            try:
                optimizer_state['amp'] = amp.state_dict()
            except AttributeError:
                pass
        torch.save(optimizer_state, save_directory / 'checkpoint.bin')

    def backward(self, loss) -> None:
        if not self._delay_accumulation:
            loss = loss / self.gradient_accumulation_steps
        if self.fp16:
            with amp.scale_loss(loss, self.optimizer,
                                delay_overflow_check=self._delay_accumulation) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()

    def step(self) -> None:
        nn.utils.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
        if self._local_rank == -1:
            self._step()
        elif not self.fp16:
            # TODO: Can you do this allreduce after accumulation also?
            self._step()
        else:
            self._step_distributed_fp16()

    def _step(self) -> None:
        self.optimizer.step()
        if self.scheduler is not None:
            self.scheduler.step()  # type: ignore
        self._global_step += 1

    def _step_distributed_fp16(self) -> None:
        # manually allreduce gradients after all accumulation steps
        # check for Inf/NaN
        # 1. allocate an uninitialized buffer for flattened gradient
        scaler = _amp_state.loss_scalers[0]
        master_grads = [p.grad for p in amp.master_params(self.optimizer) if p.grad is not None]
        flat_grad_size = sum(p.numel() for p in master_grads)
        # allreduce_dtype = torch.float16 if args.allreduce_post_accumulation_fp16 else \
            # torch.float32
        allreduce_dtype = torch.float16
        flat_raw = torch.empty(flat_grad_size, device='cuda', dtype=allreduce_dtype)
        # 2. combine unflattening and predivision of unscaled 'raw' gradient
        allreduced_views = apex_C.unflatten(flat_raw, master_grads)
        self._overflow_buf.zero_()
        amp_C.multi_tensor_scale(
            65536,
            self._overflow_buf,
            [master_grads, allreduced_views],
            scaler.loss_scale() / (
                torch.distributed.get_world_size() * self.gradient_accumulation_steps))
        # 3. sum gradient across ranks. Because of the predivision, this averages the gradient
        torch.distributed.all_reduce(flat_raw)
        # 4. combine unscaling and unflattening of allreduced gradient
        self._overflow_buf.zero_()
        amp_C.multi_tensor_scale(
            65536,
            self._overflow_buf,
            [allreduced_views, master_grads],
            1. / scaler.loss_scale())
        # 5. update loss scale
        scaler = _amp_state.loss_scalers[0]
        old_overflow_buf = scaler._overflow_buf
        scaler._overflow_buf = self._overflow_buf
        had_overflow = scaler.update_scale()
        scaler._overfloat_buf = old_overflow_buf
        # 6. call optimizer step function
        if had_overflow == 0:
            self._step()
        else:
            # Overflow detected, print message and clear gradients
            logger.info(f"Gradient overflow.  Skipping step, reducing loss scale to "
                        f"{scaler.loss_scale()}")
            if _amp_state.opt_properties.master_weights:
                for param in self.optimizer._amp_stash.all_fp32_from_fp16_params:
                    param.grad = None
        for param in self.model.parameters():
            param.grad = None

    @property
    def global_step(self) -> int:
        return self._global_step


def run_train_epoch(epoch_id: int,
                    train_loader: DataLoader,
                    runner: BackwardRunner,
                    viz: typing.Optional[visualization.TAPEVisualizer] = None,
                    num_log_iter: int = 20,
                    gradient_accumulation_steps: int = 1,
                    num_steps_per_epoch: int = -1) -> LossAndMetrics:
    if viz is None:
        viz = visualization.DummyVisualizer()
    smoothing = 1 - 1 / num_log_iter
    accumulator = utils.MetricsAccumulator(smoothing)

    torch.set_grad_enabled(True)
    runner.train()

    def make_log_str(step: int, time: float) -> str:
        ep_percent = epoch_id + step / len(train_loader)
        if runner.scheduler is not None:
            curr_lr = runner.scheduler.get_lr()[0]  # type: ignore
        else:
            curr_lr = runner.optimizer.param_groups[0]['lr']

        print_str = []
        print_str.append(f"[Ep: {ep_percent:.2f}]")
        print_str.append(f"[Iter: {runner.global_step}]")
        print_str.append(f"[Time: {time:5.2f}s]")
        print_str.append(f"[Loss: {accumulator.loss():.5g}]")

        for name, value in accumulator.metrics().items():
            print_str.append(f"[{name.capitalize()}: {value:.5g}]")

        print_str.append(f"[LR: {curr_lr:.5g}]")
        return ''.join(print_str)

    start_t = timer()
    for step, batch in enumerate(train_loader):
        loss, metrics = runner.forward(batch)  # type: ignore
        runner.backward(loss)
        accumulator.update(loss, metrics, step=False)
        if (step + 1) % gradient_accumulation_steps == 0:
            runner.step()
            viz.log_metrics(accumulator.step(), "train", runner.global_step)
            if runner.global_step % num_log_iter == 0:
                end_t = timer()
                logger.info(make_log_str(step, end_t - start_t))
                start_t = end_t
        if num_steps_per_epoch != -1 and (step + 1) > num_steps_per_epoch:
            break

    final_print_str = f"Train: [Loss: {accumulator.final_loss():.5g}]"
    for name, value in accumulator.final_metrics().items():
        final_print_str += f"[{name.capitalize()}: {value:.5g}]"
    logger.info(final_print_str)
    return accumulator.final_loss(), accumulator.final_metrics()


def run_valid_epoch(epoch_id: int,
                    valid_loader: DataLoader,
                    runner: ForwardRunner,
                    viz: typing.Optional[visualization.TAPEVisualizer] = None,
                    is_master: bool = True,
                    val_check_frac: float = 1.0) -> typing.Tuple[float, typing.Dict[str, float]]:
    num_batches = len(valid_loader)
    num_batches_to_run = int(num_batches * val_check_frac)
    accumulator = utils.MetricsAccumulator()

    torch.set_grad_enabled(False)
    runner.eval()

    for idx, batch in enumerate(tqdm(valid_loader, desc='Running Eval', total=num_batches_to_run,
                                disable=not is_master, leave=False)):
        loss, metrics = runner.forward(batch)  # type: ignore
        accumulator.update(loss, metrics)
        if idx>num_batches_to_run:
            break

    # Reduce loss across all processes if multiprocessing
    eval_loss = utils.reduce_scalar(accumulator.final_loss())
    metrics = {name: utils.reduce_scalar(value)
               for name, value in accumulator.final_metrics().items()}

    print_str = f"Evaluation: [Loss: {eval_loss:.5g}]"
    for name, value in metrics.items():
        print_str += f"[{name.capitalize()}: {value:.5g}]"

    metrics['loss'] = eval_loss
    if viz is not None:
        viz.log_metrics(metrics, "val", getattr(runner, 'global_step', epoch_id))

    logger.info(print_str)

    return eval_loss, metrics


def _get_outputs_to_save(batch, outputs):
    targets = batch['targets'].cpu().numpy()
    outputs = outputs.cpu().numpy()
    protein_length = batch['protein_length'].sum(1).cpu().numpy()

    reshaped_output = []
    for target, output, plength in zip(targets, outputs, protein_length):
        output_slices = tuple(slice(1, plength - 1) if dim == protein_length.max() else
                              slice(0, dim) for dim in output.shape)
        output = output[output_slices]
        target = target[output_slices]

        reshaped_output.append((target, output))
    reshaped_output


def run_eval_epoch(eval_loader: DataLoader,
                   runner: ForwardRunner,
                   is_master: bool = True) -> typing.List[typing.Dict[str, typing.Any]]:
    torch.set_grad_enabled(False)
    runner.eval()

    save_outputs = []

    for batch in tqdm(eval_loader, desc='Evaluation', total=len(eval_loader),
                      disable=not is_master):
        loss, metrics, outputs = runner.forward(batch, return_outputs=True)  # type: ignore
        predictions = outputs[1].cpu().numpy()
        targets = batch['targets'].cpu().numpy()
        for pred, target in zip(predictions, targets):
            save_outputs.append({'prediction': pred, 'target': target})

    return save_outputs


def run_train(model_type: str,
              task: str,
              learning_rate: float = 1e-4,
              batch_size: int = 1024,
              num_train_epochs: int = 10,
              num_log_iter: int = 20,
              fp16: bool = False,
              warmup_steps: int = 10000,
              gradient_accumulation_steps: int = 1,
              loss_scale: int = 0,
              max_grad_norm: float = 1.0,
              exp_name: typing.Optional[str] = None,
              from_pretrained: typing.Optional[str] = None,
              log_dir: str = './logs',
              eval_freq: int = 1,
              save_freq: typing.Union[int, str] = 1,
              model_config_file: typing.Optional[str] = None,
              data_dir: str = './data',
              output_dir: str = './results',
              no_cuda: bool = False,
              seed: int = 42,
              local_rank: int = -1,
              tokenizer: str = 'iupac',
              num_workers: int = 8,
              debug: bool = False,
              log_level: typing.Union[str, int] = logging.INFO,
              patience: int = -1,
              resume_from_checkpoint: bool = False,
              model_args = None,
              num_steps_per_epoch: int = -1,
              val_check_frac: float = 1.0) -> None:

    # SETUP AND LOGGING CODE #
    input_args = locals()
    device, n_gpu, is_master = utils.setup_distributed(
        local_rank, no_cuda)

    exp_dir = utils.get_expname(exp_name, task, model_type)
    save_path = Path(output_dir) / exp_dir

    if is_master:
        # save all the hidden parameters.
        save_path.mkdir(parents=True, exist_ok=True)
        with (save_path / 'args.json').open('w') as f:
            json.dump(input_args, f)

    utils.barrier_if_distributed()
    utils.setup_logging(local_rank, save_path, log_level)
    utils.set_random_seeds(seed, n_gpu)

    train_dataset = utils.setup_dataset(task, data_dir, 'train', tokenizer)
    valid_dataset = utils.setup_dataset(task, data_dir, 'valid', tokenizer)
    train_loader = utils.setup_loader(
        train_dataset, batch_size, local_rank, n_gpu,
        gradient_accumulation_steps, num_workers)
    valid_loader = utils.setup_loader(
        valid_dataset, batch_size, local_rank, n_gpu,
        gradient_accumulation_steps, num_workers)

    num_train_optimization_steps = utils.get_num_train_optimization_steps(
        train_dataset, batch_size, num_train_epochs)

    model = registry.get_task_model(model_type, task, model_config_file, from_pretrained, model_args)
    model = model.to(device)
    optimizer = utils.setup_optimizer(model, learning_rate)
    viz = visualization.get(log_dir, exp_dir, local_rank, debug=debug)
    viz.log_config(input_args)
    viz.log_config(model.config.to_dict())
    viz.watch(model)

    logger.info(
        f"device: {device} "
        f"n_gpu: {n_gpu}, "
        f"distributed_training: {local_rank != -1}, "
        f"16-bits training: {fp16}")

    runner = BackwardRunner(
        model, optimizer, gradient_accumulation_steps, device, n_gpu,
        fp16, local_rank, max_grad_norm, warmup_steps, num_train_optimization_steps)

    runner.initialize_fp16()
    if resume_from_checkpoint:
        assert from_pretrained is not None
        start_epoch = runner.resume_from_checkpoint(from_pretrained)
    else:
        start_epoch = 0
    runner.initialize_distributed_model()

    num_train_optimization_steps = utils.get_num_train_optimization_steps(
        train_dataset, batch_size, num_train_epochs)
    is_master = local_rank in (-1, 0)

    if isinstance(save_freq, str) and save_freq != 'improvement':
        raise ValueError(
            f"Only recongized string value for save_freq is 'improvement'"
            f", received: {save_freq}")

    if save_freq == 'improvement' and eval_freq <= 0:
        raise ValueError("Cannot set save_freq to 'improvement' and eval_freq < 0")

    num_trainable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Batch size = %d", batch_size)
    logger.info("  Num epochs = %d", num_train_epochs)
    logger.info("  Num train steps = %d", num_train_optimization_steps)
    logger.info("  Num parameters = %d", num_trainable_parameters)

    best_val_loss = float('inf')
    num_evals_no_improvement = 0

    def do_save(epoch_id: int, num_evals_no_improvement: int) -> bool:
        if not is_master:
            return False
        if isinstance(save_freq, int):
            return ((epoch_id + 1) % save_freq == 0) or ((epoch_id + 1) == num_train_epochs)
        else:
            return num_evals_no_improvement == 0

    utils.barrier_if_distributed()

    # ACTUAL TRAIN/EVAL LOOP #
    with utils.wrap_cuda_oom_error(local_rank, batch_size, n_gpu, gradient_accumulation_steps):
        for epoch_id in range(start_epoch, num_train_epochs):
            run_train_epoch(epoch_id, train_loader, runner,
                            viz, num_log_iter, gradient_accumulation_steps, num_steps_per_epoch)
            if eval_freq > 0 and (epoch_id + 1) % eval_freq == 0:
                val_loss, _ = run_valid_epoch(epoch_id, valid_loader, runner, viz, is_master, val_check_frac)
                if val_loss < best_val_loss:
                    best_val_loss = val_loss
                    num_evals_no_improvement = 0
                else:
                    num_evals_no_improvement += 1

            # Save trained model
            if do_save(epoch_id, num_evals_no_improvement):
                logger.info("** ** * Saving trained model ** ** * ")
                # Only save the model itself
                runner.save_state(save_path, epoch_id)
                logger.info(f"Saving model checkpoint to {save_path}")

            utils.barrier_if_distributed()
            if patience > 0 and num_evals_no_improvement >= patience:
                logger.info(f"Finished training at epoch {epoch_id} because no "
                            f"improvement for {num_evals_no_improvement} epochs.")
                logger.log(35, f"Best Val Loss: {best_val_loss}")
                if local_rank != -1:
                    # If you're distributed, raise this error. It sends a signal to
                    # the master process which lets it kill other processes and terminate
                    # without actually reporting an error. See utils/distributed_utils.py
                    # for the signal handling code.
                    raise errors.EarlyStopping
                else:
                    break
    logger.info(f"Finished training after {num_train_epochs} epochs.")
    if best_val_loss != float('inf'):
        logger.log(35, f"Best Val Loss: {best_val_loss}")


def run_eval(model_type: str,
             task: str,
             from_pretrained: str,
             split: str = 'test',
             batch_size: int = 1024,
             model_config_file: typing.Optional[str] = None,
             data_dir: str = './data',
             no_cuda: bool = False,
             seed: int = 42,
             tokenizer: str = 'iupac',
             num_workers: int = 8,
             debug: bool = False,
             metrics: typing.Tuple[str, ...] = (),
             log_level: typing.Union[str, int] = logging.INFO) -> typing.Dict[str, float]:

    local_rank = -1  # TAPE does not support torch.distributed.launch for evaluation
    device, n_gpu, is_master = utils.setup_distributed(local_rank, no_cuda)
    utils.setup_logging(local_rank, save_path=None, log_level=log_level)
    utils.set_random_seeds(seed, n_gpu)

    pretrained_dir = Path(from_pretrained)

    logger.info(
        f"device: {device} "
        f"n_gpu: {n_gpu}")

    model = registry.get_task_model(model_type, task, model_config_file, from_pretrained)
    model = model.to(device)

    runner = ForwardRunner(model, device, n_gpu)
    runner.initialize_distributed_model()
    valid_dataset = utils.setup_dataset(task, data_dir, split, tokenizer)
    valid_loader = utils.setup_loader(
        valid_dataset, batch_size, local_rank, n_gpu,
        1, num_workers)

    metric_functions = [registry.get_metric(name) for name in metrics]
    save_outputs = run_eval_epoch(valid_loader, runner, is_master)
    target = [el['target'] for el in save_outputs]
    prediction = [el['prediction'] for el in save_outputs]

    metrics_to_save = {name: metric(target, prediction)
                       for name, metric in zip(metrics, metric_functions)}
    logger.info(''.join(f'{name}: {val}' for name, val in metrics_to_save.items()))

    with (pretrained_dir / 'results.pkl').open('wb') as f:
        pkl.dump((metrics_to_save, save_outputs), f)

    return metrics_to_save


def run_embed(model_type: str,
              data_file: str,
              out_file: str,
              from_pretrained: str,
              batch_size: int = 1024,
              model_config_file: typing.Optional[str] = None,
              full_sequence_embed: bool = False,
              no_cuda: bool = False,
              seed: int = 42,
              tokenizer: str = 'iupac',
              num_workers: int = 8,
              log_level: typing.Union[str, int] = logging.INFO) -> None:

    local_rank = -1  # TAPE does not support torch.distributed.launch for embedding
    device, n_gpu, is_master = utils.setup_distributed(local_rank, no_cuda)
    utils.setup_logging(local_rank, save_path=None, log_level=log_level)
    utils.set_random_seeds(seed, n_gpu)

    logger.info(
        f"device: {device} "
        f"n_gpu: {n_gpu}")

    task_spec = registry.get_task_spec('embed')
    model = registry.get_task_model(
        model_type, task_spec.name, model_config_file, from_pretrained)
    model = model.to(device)
    runner = ForwardRunner(model, device, n_gpu)
    runner.initialize_distributed_model()
    runner.eval()
    torch.set_grad_enabled(False)

    dataset = task_spec.dataset(data_file, tokenizer=tokenizer)  # type: ignore
    valid_loader = utils.setup_loader(dataset, batch_size, local_rank, n_gpu, 1, num_workers)

    with utils.IncrementalNPZ(out_file) as npzfile:
        with utils.wrap_cuda_oom_error(local_rank, batch_size, n_gpu):
            for batch in tqdm(valid_loader, total=len(valid_loader)):
                outputs = runner.forward(batch, no_loss=True)
                ids = batch['ids']
                sequence_embed = outputs[0]
                pooled_embed = outputs[1]
                sequence_lengths = batch['input_mask'].sum(1)
                sequence_embed = sequence_embed.cpu().numpy()
                pooled_embed = pooled_embed.cpu().numpy()
                sequence_lengths = sequence_lengths.cpu().numpy()

                for seqembed, poolembed, length, protein_id in zip(
                        sequence_embed, pooled_embed, sequence_lengths, ids):
                    seqembed = seqembed[:length]
                    arrays = {'pooled': poolembed}
                    if not full_sequence_embed:
                        # avgpool across the sequence
                        arrays['avg'] = seqembed.mean(0)
                    else:
                        arrays['seq'] = seqembed
                    to_save = {protein_id: arrays}
                    npzfile.savez(**to_save)