File size: 26,325 Bytes
212111c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
import typing
import os
import logging
from timeit import default_timer as timer
import json
from pathlib import Path
import inspect
import pickle as pkl
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from .optimization import WarmupLinearSchedule
from . import utils
from . import errors
from . import visualization
from .registry import registry
from .models.modeling_utils import ProteinModel
try:
from apex import amp
import amp_C
import apex_C
from apex.amp import _amp_state
from apex.parallel.distributed import flat_dist_call
from apex.parallel.distributed import DistributedDataParallel as DDP
APEX_FOUND = True
except ImportError:
APEX_FOUND = False
logger = logging.getLogger(__name__)
MetricsDict = typing.Dict[str, float]
LossAndMetrics = typing.Tuple[float, MetricsDict]
OutputDict = typing.Dict[str, typing.Any]
class ForwardRunner:
def __init__(self,
model: ProteinModel,
device: torch.device = torch.device('cuda:0'),
n_gpu: int = 1,
fp16: bool = False,
local_rank: int = -1):
self.model = model
self.device = device
self.n_gpu = n_gpu
self.fp16 = fp16
self.local_rank = local_rank
forward_arg_keys = inspect.getfullargspec(model.forward).args
forward_arg_keys = forward_arg_keys[1:] # remove self argument
self._forward_arg_keys = forward_arg_keys
assert 'input_ids' in self._forward_arg_keys
def initialize_distributed_model(self):
if self.local_rank != -1:
if not self.fp16:
self.model = DDP(self.model)
else:
flat_dist_call([param.data for param in self.model.parameters()],
torch.distributed.broadcast, (0,))
elif self.n_gpu > 1:
self.model = nn.DataParallel(self.model)
def forward(self,
batch: typing.Dict[str, torch.Tensor],
return_outputs: bool = False,
no_loss: bool = False):
# Filter out batch items that aren't used in this model
# Requires that dataset keys match the forward args of the model
# Useful if some elements of the data are only used by certain models
# e.g. PSSMs / MSAs and other evolutionary data
batch = {name: tensor for name, tensor in batch.items()
if name in self._forward_arg_keys}
if self.device.type == 'cuda':
batch = {name: tensor.cuda(device=self.device, non_blocking=True)
for name, tensor in batch.items()}
outputs = self.model(**batch)
if no_loss:
return outputs
if isinstance(outputs[0], tuple):
# model also returned metrics
loss, metrics = outputs[0]
else:
# no metrics
loss = outputs[0]
metrics = {}
if self.n_gpu > 1: # pytorch DataDistributed doesn't mean scalars
loss = loss.mean()
metrics = {name: metric.mean() for name, metric in metrics.items()}
if return_outputs:
return loss, metrics, outputs
else:
return loss, metrics
def train(self):
self.model.train()
return self
def eval(self):
self.model.eval()
return self
class BackwardRunner(ForwardRunner):
def __init__(self,
model: ProteinModel,
optimizer: optim.Optimizer, # type: ignore
gradient_accumulation_steps: int = 1,
device: torch.device = torch.device('cuda:0'),
n_gpu: int = 1,
fp16: bool = False,
local_rank: int = -1,
max_grad_norm: float = 1.0,
warmup_steps: int = 0,
num_train_optimization_steps: int = 1000000):
super().__init__(model, device, n_gpu, fp16, local_rank)
self.optimizer = optimizer
self.max_grad_norm = max_grad_norm
self._global_step = 0
self._local_rank = local_rank
self._overflow_buf = torch.cuda.IntTensor([0]) # type: ignore
self.gradient_accumulation_steps = gradient_accumulation_steps
self._delay_accumulation = fp16 and local_rank != -1
self.scheduler = WarmupLinearSchedule(
self.optimizer, warmup_steps, num_train_optimization_steps)
def initialize_fp16(self):
if self.fp16:
self.model, self.optimizer = amp.initialize(
self.model, self.optimizer, opt_level="O2", loss_scale="dynamic",
master_weights=True)
_amp_state.loss_scalers[0]._loss_scale = 2 ** 20
def resume_from_checkpoint(self, checkpoint_dir: str) -> int:
checkpoint = torch.load(
os.path.join(checkpoint_dir, 'checkpoint.bin'), map_location=self.device)
self.optimizer.load_state_dict(checkpoint['optimizer'])
if self.fp16:
self.optimizer._lazy_init_maybe_master_weights()
self.optimizer._amp_stash.lazy_init_called = True
self.optimizer.load_state_dict(checkpoint['optimizer'])
for param, saved in zip(
amp.master_params(self.optimizer), checkpoint['master params']):
param.data.copy_(saved.data)
amp.load_state_dict(checkpoint['amp'])
self.scheduler.load_state_dict(checkpoint['scheduler'])
start_epoch = checkpoint['epoch'] + 1
return start_epoch
def save_state(self, save_directory: typing.Union[str, Path], epoch_id: int):
save_directory = Path(save_directory)
if not save_directory.exists():
save_directory.mkdir()
else:
assert save_directory.is_dir(), "Save path should be a directory"
model_to_save = getattr(self.model, 'module', self.model)
model_to_save.save_pretrained(save_directory)
optimizer_state: typing.Dict[str, typing.Any] = {
'optimizer': self.optimizer.state_dict(),
'scheduler': self.scheduler.state_dict(),
'epoch': epoch_id}
if APEX_FOUND:
optimizer_state['master params'] = list(amp.master_params(self.optimizer))
try:
optimizer_state['amp'] = amp.state_dict()
except AttributeError:
pass
torch.save(optimizer_state, save_directory / 'checkpoint.bin')
def backward(self, loss) -> None:
if not self._delay_accumulation:
loss = loss / self.gradient_accumulation_steps
if self.fp16:
with amp.scale_loss(loss, self.optimizer,
delay_overflow_check=self._delay_accumulation) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
def step(self) -> None:
nn.utils.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
if self._local_rank == -1:
self._step()
elif not self.fp16:
# TODO: Can you do this allreduce after accumulation also?
self._step()
else:
self._step_distributed_fp16()
def _step(self) -> None:
self.optimizer.step()
if self.scheduler is not None:
self.scheduler.step() # type: ignore
self._global_step += 1
def _step_distributed_fp16(self) -> None:
# manually allreduce gradients after all accumulation steps
# check for Inf/NaN
# 1. allocate an uninitialized buffer for flattened gradient
scaler = _amp_state.loss_scalers[0]
master_grads = [p.grad for p in amp.master_params(self.optimizer) if p.grad is not None]
flat_grad_size = sum(p.numel() for p in master_grads)
# allreduce_dtype = torch.float16 if args.allreduce_post_accumulation_fp16 else \
# torch.float32
allreduce_dtype = torch.float16
flat_raw = torch.empty(flat_grad_size, device='cuda', dtype=allreduce_dtype)
# 2. combine unflattening and predivision of unscaled 'raw' gradient
allreduced_views = apex_C.unflatten(flat_raw, master_grads)
self._overflow_buf.zero_()
amp_C.multi_tensor_scale(
65536,
self._overflow_buf,
[master_grads, allreduced_views],
scaler.loss_scale() / (
torch.distributed.get_world_size() * self.gradient_accumulation_steps))
# 3. sum gradient across ranks. Because of the predivision, this averages the gradient
torch.distributed.all_reduce(flat_raw)
# 4. combine unscaling and unflattening of allreduced gradient
self._overflow_buf.zero_()
amp_C.multi_tensor_scale(
65536,
self._overflow_buf,
[allreduced_views, master_grads],
1. / scaler.loss_scale())
# 5. update loss scale
scaler = _amp_state.loss_scalers[0]
old_overflow_buf = scaler._overflow_buf
scaler._overflow_buf = self._overflow_buf
had_overflow = scaler.update_scale()
scaler._overfloat_buf = old_overflow_buf
# 6. call optimizer step function
if had_overflow == 0:
self._step()
else:
# Overflow detected, print message and clear gradients
logger.info(f"Gradient overflow. Skipping step, reducing loss scale to "
f"{scaler.loss_scale()}")
if _amp_state.opt_properties.master_weights:
for param in self.optimizer._amp_stash.all_fp32_from_fp16_params:
param.grad = None
for param in self.model.parameters():
param.grad = None
@property
def global_step(self) -> int:
return self._global_step
def run_train_epoch(epoch_id: int,
train_loader: DataLoader,
runner: BackwardRunner,
viz: typing.Optional[visualization.TAPEVisualizer] = None,
num_log_iter: int = 20,
gradient_accumulation_steps: int = 1,
num_steps_per_epoch: int = -1) -> LossAndMetrics:
if viz is None:
viz = visualization.DummyVisualizer()
smoothing = 1 - 1 / num_log_iter
accumulator = utils.MetricsAccumulator(smoothing)
torch.set_grad_enabled(True)
runner.train()
def make_log_str(step: int, time: float) -> str:
ep_percent = epoch_id + step / len(train_loader)
if runner.scheduler is not None:
curr_lr = runner.scheduler.get_lr()[0] # type: ignore
else:
curr_lr = runner.optimizer.param_groups[0]['lr']
print_str = []
print_str.append(f"[Ep: {ep_percent:.2f}]")
print_str.append(f"[Iter: {runner.global_step}]")
print_str.append(f"[Time: {time:5.2f}s]")
print_str.append(f"[Loss: {accumulator.loss():.5g}]")
for name, value in accumulator.metrics().items():
print_str.append(f"[{name.capitalize()}: {value:.5g}]")
print_str.append(f"[LR: {curr_lr:.5g}]")
return ''.join(print_str)
start_t = timer()
for step, batch in enumerate(train_loader):
loss, metrics = runner.forward(batch) # type: ignore
runner.backward(loss)
accumulator.update(loss, metrics, step=False)
if (step + 1) % gradient_accumulation_steps == 0:
runner.step()
viz.log_metrics(accumulator.step(), "train", runner.global_step)
if runner.global_step % num_log_iter == 0:
end_t = timer()
logger.info(make_log_str(step, end_t - start_t))
start_t = end_t
if num_steps_per_epoch != -1 and (step + 1) > num_steps_per_epoch:
break
final_print_str = f"Train: [Loss: {accumulator.final_loss():.5g}]"
for name, value in accumulator.final_metrics().items():
final_print_str += f"[{name.capitalize()}: {value:.5g}]"
logger.info(final_print_str)
return accumulator.final_loss(), accumulator.final_metrics()
def run_valid_epoch(epoch_id: int,
valid_loader: DataLoader,
runner: ForwardRunner,
viz: typing.Optional[visualization.TAPEVisualizer] = None,
is_master: bool = True,
val_check_frac: float = 1.0) -> typing.Tuple[float, typing.Dict[str, float]]:
num_batches = len(valid_loader)
num_batches_to_run = int(num_batches * val_check_frac)
accumulator = utils.MetricsAccumulator()
torch.set_grad_enabled(False)
runner.eval()
for idx, batch in enumerate(tqdm(valid_loader, desc='Running Eval', total=num_batches_to_run,
disable=not is_master, leave=False)):
loss, metrics = runner.forward(batch) # type: ignore
accumulator.update(loss, metrics)
if idx>num_batches_to_run:
break
# Reduce loss across all processes if multiprocessing
eval_loss = utils.reduce_scalar(accumulator.final_loss())
metrics = {name: utils.reduce_scalar(value)
for name, value in accumulator.final_metrics().items()}
print_str = f"Evaluation: [Loss: {eval_loss:.5g}]"
for name, value in metrics.items():
print_str += f"[{name.capitalize()}: {value:.5g}]"
metrics['loss'] = eval_loss
if viz is not None:
viz.log_metrics(metrics, "val", getattr(runner, 'global_step', epoch_id))
logger.info(print_str)
return eval_loss, metrics
def _get_outputs_to_save(batch, outputs):
targets = batch['targets'].cpu().numpy()
outputs = outputs.cpu().numpy()
protein_length = batch['protein_length'].sum(1).cpu().numpy()
reshaped_output = []
for target, output, plength in zip(targets, outputs, protein_length):
output_slices = tuple(slice(1, plength - 1) if dim == protein_length.max() else
slice(0, dim) for dim in output.shape)
output = output[output_slices]
target = target[output_slices]
reshaped_output.append((target, output))
reshaped_output
def run_eval_epoch(eval_loader: DataLoader,
runner: ForwardRunner,
is_master: bool = True) -> typing.List[typing.Dict[str, typing.Any]]:
torch.set_grad_enabled(False)
runner.eval()
save_outputs = []
for batch in tqdm(eval_loader, desc='Evaluation', total=len(eval_loader),
disable=not is_master):
loss, metrics, outputs = runner.forward(batch, return_outputs=True) # type: ignore
predictions = outputs[1].cpu().numpy()
targets = batch['targets'].cpu().numpy()
for pred, target in zip(predictions, targets):
save_outputs.append({'prediction': pred, 'target': target})
return save_outputs
def run_train(model_type: str,
task: str,
learning_rate: float = 1e-4,
batch_size: int = 1024,
num_train_epochs: int = 10,
num_log_iter: int = 20,
fp16: bool = False,
warmup_steps: int = 10000,
gradient_accumulation_steps: int = 1,
loss_scale: int = 0,
max_grad_norm: float = 1.0,
exp_name: typing.Optional[str] = None,
from_pretrained: typing.Optional[str] = None,
log_dir: str = './logs',
eval_freq: int = 1,
save_freq: typing.Union[int, str] = 1,
model_config_file: typing.Optional[str] = None,
data_dir: str = './data',
output_dir: str = './results',
no_cuda: bool = False,
seed: int = 42,
local_rank: int = -1,
tokenizer: str = 'iupac',
num_workers: int = 8,
debug: bool = False,
log_level: typing.Union[str, int] = logging.INFO,
patience: int = -1,
resume_from_checkpoint: bool = False,
model_args = None,
num_steps_per_epoch: int = -1,
val_check_frac: float = 1.0) -> None:
# SETUP AND LOGGING CODE #
input_args = locals()
device, n_gpu, is_master = utils.setup_distributed(
local_rank, no_cuda)
exp_dir = utils.get_expname(exp_name, task, model_type)
save_path = Path(output_dir) / exp_dir
if is_master:
# save all the hidden parameters.
save_path.mkdir(parents=True, exist_ok=True)
with (save_path / 'args.json').open('w') as f:
json.dump(input_args, f)
utils.barrier_if_distributed()
utils.setup_logging(local_rank, save_path, log_level)
utils.set_random_seeds(seed, n_gpu)
train_dataset = utils.setup_dataset(task, data_dir, 'train', tokenizer)
valid_dataset = utils.setup_dataset(task, data_dir, 'valid', tokenizer)
train_loader = utils.setup_loader(
train_dataset, batch_size, local_rank, n_gpu,
gradient_accumulation_steps, num_workers)
valid_loader = utils.setup_loader(
valid_dataset, batch_size, local_rank, n_gpu,
gradient_accumulation_steps, num_workers)
num_train_optimization_steps = utils.get_num_train_optimization_steps(
train_dataset, batch_size, num_train_epochs)
model = registry.get_task_model(model_type, task, model_config_file, from_pretrained, model_args)
model = model.to(device)
optimizer = utils.setup_optimizer(model, learning_rate)
viz = visualization.get(log_dir, exp_dir, local_rank, debug=debug)
viz.log_config(input_args)
viz.log_config(model.config.to_dict())
viz.watch(model)
logger.info(
f"device: {device} "
f"n_gpu: {n_gpu}, "
f"distributed_training: {local_rank != -1}, "
f"16-bits training: {fp16}")
runner = BackwardRunner(
model, optimizer, gradient_accumulation_steps, device, n_gpu,
fp16, local_rank, max_grad_norm, warmup_steps, num_train_optimization_steps)
runner.initialize_fp16()
if resume_from_checkpoint:
assert from_pretrained is not None
start_epoch = runner.resume_from_checkpoint(from_pretrained)
else:
start_epoch = 0
runner.initialize_distributed_model()
num_train_optimization_steps = utils.get_num_train_optimization_steps(
train_dataset, batch_size, num_train_epochs)
is_master = local_rank in (-1, 0)
if isinstance(save_freq, str) and save_freq != 'improvement':
raise ValueError(
f"Only recongized string value for save_freq is 'improvement'"
f", received: {save_freq}")
if save_freq == 'improvement' and eval_freq <= 0:
raise ValueError("Cannot set save_freq to 'improvement' and eval_freq < 0")
num_trainable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Batch size = %d", batch_size)
logger.info(" Num epochs = %d", num_train_epochs)
logger.info(" Num train steps = %d", num_train_optimization_steps)
logger.info(" Num parameters = %d", num_trainable_parameters)
best_val_loss = float('inf')
num_evals_no_improvement = 0
def do_save(epoch_id: int, num_evals_no_improvement: int) -> bool:
if not is_master:
return False
if isinstance(save_freq, int):
return ((epoch_id + 1) % save_freq == 0) or ((epoch_id + 1) == num_train_epochs)
else:
return num_evals_no_improvement == 0
utils.barrier_if_distributed()
# ACTUAL TRAIN/EVAL LOOP #
with utils.wrap_cuda_oom_error(local_rank, batch_size, n_gpu, gradient_accumulation_steps):
for epoch_id in range(start_epoch, num_train_epochs):
run_train_epoch(epoch_id, train_loader, runner,
viz, num_log_iter, gradient_accumulation_steps, num_steps_per_epoch)
if eval_freq > 0 and (epoch_id + 1) % eval_freq == 0:
val_loss, _ = run_valid_epoch(epoch_id, valid_loader, runner, viz, is_master, val_check_frac)
if val_loss < best_val_loss:
best_val_loss = val_loss
num_evals_no_improvement = 0
else:
num_evals_no_improvement += 1
# Save trained model
if do_save(epoch_id, num_evals_no_improvement):
logger.info("** ** * Saving trained model ** ** * ")
# Only save the model itself
runner.save_state(save_path, epoch_id)
logger.info(f"Saving model checkpoint to {save_path}")
utils.barrier_if_distributed()
if patience > 0 and num_evals_no_improvement >= patience:
logger.info(f"Finished training at epoch {epoch_id} because no "
f"improvement for {num_evals_no_improvement} epochs.")
logger.log(35, f"Best Val Loss: {best_val_loss}")
if local_rank != -1:
# If you're distributed, raise this error. It sends a signal to
# the master process which lets it kill other processes and terminate
# without actually reporting an error. See utils/distributed_utils.py
# for the signal handling code.
raise errors.EarlyStopping
else:
break
logger.info(f"Finished training after {num_train_epochs} epochs.")
if best_val_loss != float('inf'):
logger.log(35, f"Best Val Loss: {best_val_loss}")
def run_eval(model_type: str,
task: str,
from_pretrained: str,
split: str = 'test',
batch_size: int = 1024,
model_config_file: typing.Optional[str] = None,
data_dir: str = './data',
no_cuda: bool = False,
seed: int = 42,
tokenizer: str = 'iupac',
num_workers: int = 8,
debug: bool = False,
metrics: typing.Tuple[str, ...] = (),
log_level: typing.Union[str, int] = logging.INFO) -> typing.Dict[str, float]:
local_rank = -1 # TAPE does not support torch.distributed.launch for evaluation
device, n_gpu, is_master = utils.setup_distributed(local_rank, no_cuda)
utils.setup_logging(local_rank, save_path=None, log_level=log_level)
utils.set_random_seeds(seed, n_gpu)
pretrained_dir = Path(from_pretrained)
logger.info(
f"device: {device} "
f"n_gpu: {n_gpu}")
model = registry.get_task_model(model_type, task, model_config_file, from_pretrained)
model = model.to(device)
runner = ForwardRunner(model, device, n_gpu)
runner.initialize_distributed_model()
valid_dataset = utils.setup_dataset(task, data_dir, split, tokenizer)
valid_loader = utils.setup_loader(
valid_dataset, batch_size, local_rank, n_gpu,
1, num_workers)
metric_functions = [registry.get_metric(name) for name in metrics]
save_outputs = run_eval_epoch(valid_loader, runner, is_master)
target = [el['target'] for el in save_outputs]
prediction = [el['prediction'] for el in save_outputs]
metrics_to_save = {name: metric(target, prediction)
for name, metric in zip(metrics, metric_functions)}
logger.info(''.join(f'{name}: {val}' for name, val in metrics_to_save.items()))
with (pretrained_dir / 'results.pkl').open('wb') as f:
pkl.dump((metrics_to_save, save_outputs), f)
return metrics_to_save
def run_embed(model_type: str,
data_file: str,
out_file: str,
from_pretrained: str,
batch_size: int = 1024,
model_config_file: typing.Optional[str] = None,
full_sequence_embed: bool = False,
no_cuda: bool = False,
seed: int = 42,
tokenizer: str = 'iupac',
num_workers: int = 8,
log_level: typing.Union[str, int] = logging.INFO) -> None:
local_rank = -1 # TAPE does not support torch.distributed.launch for embedding
device, n_gpu, is_master = utils.setup_distributed(local_rank, no_cuda)
utils.setup_logging(local_rank, save_path=None, log_level=log_level)
utils.set_random_seeds(seed, n_gpu)
logger.info(
f"device: {device} "
f"n_gpu: {n_gpu}")
task_spec = registry.get_task_spec('embed')
model = registry.get_task_model(
model_type, task_spec.name, model_config_file, from_pretrained)
model = model.to(device)
runner = ForwardRunner(model, device, n_gpu)
runner.initialize_distributed_model()
runner.eval()
torch.set_grad_enabled(False)
dataset = task_spec.dataset(data_file, tokenizer=tokenizer) # type: ignore
valid_loader = utils.setup_loader(dataset, batch_size, local_rank, n_gpu, 1, num_workers)
with utils.IncrementalNPZ(out_file) as npzfile:
with utils.wrap_cuda_oom_error(local_rank, batch_size, n_gpu):
for batch in tqdm(valid_loader, total=len(valid_loader)):
outputs = runner.forward(batch, no_loss=True)
ids = batch['ids']
sequence_embed = outputs[0]
pooled_embed = outputs[1]
sequence_lengths = batch['input_mask'].sum(1)
sequence_embed = sequence_embed.cpu().numpy()
pooled_embed = pooled_embed.cpu().numpy()
sequence_lengths = sequence_lengths.cpu().numpy()
for seqembed, poolembed, length, protein_id in zip(
sequence_embed, pooled_embed, sequence_lengths, ids):
seqembed = seqembed[:length]
arrays = {'pooled': poolembed}
if not full_sequence_embed:
# avgpool across the sequence
arrays['avg'] = seqembed.mean(0)
else:
arrays['seq'] = seqembed
to_save = {protein_id: arrays}
npzfile.savez(**to_save)
|