|
import typing |
|
import logging |
|
import torch |
|
import torch.nn as nn |
|
|
|
from .modeling_utils import ProteinConfig |
|
from .modeling_utils import ProteinModel |
|
from .modeling_utils import get_activation_fn |
|
from .modeling_utils import MLMHead |
|
from .modeling_utils import LayerNorm |
|
from .modeling_utils import ValuePredictionHead |
|
from .modeling_utils import SequenceClassificationHead |
|
from .modeling_utils import SequenceToSequenceClassificationHead |
|
from .modeling_utils import PairwiseContactPredictionHead |
|
from ..registry import registry |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP: typing.Dict[str, str] = {} |
|
RESNET_PRETRAINED_MODEL_ARCHIVE_MAP: typing.Dict[str, str] = {} |
|
|
|
|
|
class ProteinResNetConfig(ProteinConfig): |
|
pretrained_config_archive_map = RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP |
|
|
|
def __init__(self, |
|
vocab_size: int = 30, |
|
hidden_size: int = 512, |
|
num_hidden_layers: int = 30, |
|
hidden_act: str = "gelu", |
|
hidden_dropout_prob: float = 0.1, |
|
initializer_range: float = 0.02, |
|
layer_norm_eps: float = 1e-12, |
|
temporal_pooling: str = 'attention', |
|
freeze_embedding: bool = False, |
|
**kwargs): |
|
super().__init__(**kwargs) |
|
self.vocab_size = vocab_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.hidden_size = hidden_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.temporal_pooling = temporal_pooling |
|
self.freeze_embedding = freeze_embedding |
|
|
|
|
|
class MaskedConv1d(nn.Conv1d): |
|
|
|
def forward(self, x, input_mask=None): |
|
if input_mask is not None: |
|
x = x * input_mask |
|
return super().forward(x) |
|
|
|
|
|
class ProteinResNetLayerNorm(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.norm = LayerNorm(config.hidden_size) |
|
|
|
def forward(self, x): |
|
return self.norm(x.transpose(1, 2)).transpose(1, 2) |
|
|
|
|
|
class ProteinResNetBlock(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.conv1 = MaskedConv1d( |
|
config.hidden_size, config.hidden_size, 3, padding=1, bias=False) |
|
|
|
self.bn1 = ProteinResNetLayerNorm(config) |
|
self.conv2 = MaskedConv1d( |
|
config.hidden_size, config.hidden_size, 3, padding=1, bias=False) |
|
|
|
self.bn2 = ProteinResNetLayerNorm(config) |
|
self.activation_fn = get_activation_fn(config.hidden_act) |
|
|
|
def forward(self, x, input_mask=None): |
|
identity = x |
|
|
|
out = self.conv1(x, input_mask) |
|
out = self.bn1(out) |
|
out = self.activation_fn(out) |
|
|
|
out = self.conv2(out, input_mask) |
|
out = self.bn2(out) |
|
|
|
out += identity |
|
out = self.activation_fn(out) |
|
|
|
return out |
|
|
|
|
|
class ProteinResNetEmbeddings(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings. |
|
""" |
|
def __init__(self, config): |
|
super().__init__() |
|
embed_dim = config.hidden_size |
|
self.word_embeddings = nn.Embedding(config.vocab_size, embed_dim, padding_idx=0) |
|
inverse_frequency = 1 / (10000 ** (torch.arange(0.0, embed_dim, 2.0) / embed_dim)) |
|
self.register_buffer('inverse_frequency', inverse_frequency) |
|
|
|
self.layer_norm = LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, input_ids): |
|
words_embeddings = self.word_embeddings(input_ids) |
|
|
|
seq_length = input_ids.size(1) |
|
position_ids = torch.arange( |
|
seq_length - 1, -1, -1.0, |
|
dtype=words_embeddings.dtype, |
|
device=words_embeddings.device) |
|
sinusoidal_input = torch.ger(position_ids, self.inverse_frequency) |
|
position_embeddings = torch.cat([sinusoidal_input.sin(), sinusoidal_input.cos()], -1) |
|
position_embeddings = position_embeddings.unsqueeze(0) |
|
|
|
embeddings = words_embeddings + position_embeddings |
|
embeddings = self.layer_norm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class ProteinResNetPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.attention_weights = nn.Linear(config.hidden_size, 1) |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
self.temporal_pooling = config.temporal_pooling |
|
self._la_w1 = nn.Conv1d(config.hidden_size, int(config.hidden_size/2), 5, padding=2) |
|
self._la_w2 = nn.Conv1d(config.hidden_size, int(config.hidden_size/2), 5, padding=2) |
|
self._la_mlp = nn.Linear(config.hidden_size, config.hidden_size) |
|
|
|
def forward(self, hidden_states, mask=None): |
|
|
|
|
|
if self.temporal_pooling == 'mean': |
|
return hidden_states.mean(dim=1) |
|
if self.temporal_pooling == 'max': |
|
return hidden_states.max(dim=1) |
|
if self.temporal_pooling == 'concat': |
|
_temp = hidden_states.reshape(hidden_states.shape[0], -1) |
|
return torch.nn.functional.pad(_temp, (0, 2048 - _temp.shape[1])) |
|
if self.temporal_pooling == 'meanmax': |
|
_mean = hidden_states.mean(dim=1) |
|
_max = hidden_states.max(dim=1) |
|
return torch.cat([_mean, _max]) |
|
if self.temporal_pooling == 'topmax': |
|
val, _ = torch.topk(hidden_states, k=5, dim=1) |
|
return val.mean(dim=1) |
|
if self.temporal_pooling == 'light_attention': |
|
_temp = hidden_states.permute(0,2,1) |
|
a = self._la_w1(_temp).softmax(dim=-1) |
|
v = self._la_w2(_temp) |
|
v_max = v.max(dim=-1).values |
|
v_sum = (a * v).sum(dim=-1) |
|
return self._la_mlp(torch.cat([v_max, v_sum], dim=1)) |
|
|
|
attention_scores = self.attention_weights(hidden_states) |
|
if mask is not None: |
|
attention_scores += -10000. * (1 - mask) |
|
attention_weights = torch.softmax(attention_scores, -1) |
|
weighted_mean_embedding = torch.matmul( |
|
hidden_states.transpose(1, 2), attention_weights).squeeze(2) |
|
pooled_output = self.dense(weighted_mean_embedding) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class ResNetEncoder(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.output_hidden_states = config.output_hidden_states |
|
self.layer = nn.ModuleList( |
|
[ProteinResNetBlock(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
def forward(self, hidden_states, input_mask=None): |
|
all_hidden_states = () |
|
for layer_module in self.layer: |
|
if self.output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
hidden_states = layer_module(hidden_states, input_mask) |
|
|
|
if self.output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
outputs = (hidden_states,) |
|
if self.output_hidden_states: |
|
outputs = outputs + (all_hidden_states,) |
|
|
|
return outputs |
|
|
|
|
|
class ProteinResNetAbstractModel(ProteinModel): |
|
""" An abstract class to handle weights initialization and |
|
a simple interface for dowloading and loading pretrained models. |
|
""" |
|
config_class = ProteinResNetConfig |
|
pretrained_model_archive_map = RESNET_PRETRAINED_MODEL_ARCHIVE_MAP |
|
base_model_prefix = "resnet" |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
def _init_weights(self, module): |
|
""" Initialize the weights """ |
|
if isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
elif isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Conv1d): |
|
nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
|
|
|
|
|
|
@registry.register_task_model('embed', 'resnet') |
|
class ProteinResNetModel(ProteinResNetAbstractModel): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.embeddings = ProteinResNetEmbeddings(config) |
|
self.encoder = ResNetEncoder(config) |
|
self.pooler = ProteinResNetPooler(config) |
|
|
|
self.init_weights() |
|
|
|
def forward(self, |
|
input_ids, |
|
input_mask=None): |
|
if input_mask is not None and torch.any(input_mask != 1): |
|
extended_input_mask = input_mask.unsqueeze(2) |
|
|
|
extended_input_mask = extended_input_mask.to( |
|
dtype=next(self.parameters()).dtype) |
|
else: |
|
extended_input_mask = None |
|
|
|
embedding_output = self.embeddings(input_ids) |
|
embedding_output = embedding_output.transpose(1, 2) |
|
if extended_input_mask is not None: |
|
extended_input_mask = extended_input_mask.transpose(1, 2) |
|
encoder_outputs = self.encoder(embedding_output, extended_input_mask) |
|
sequence_output = encoder_outputs[0] |
|
sequence_output = sequence_output.transpose(1, 2).contiguous() |
|
|
|
if extended_input_mask is not None: |
|
extended_input_mask = extended_input_mask.transpose(1, 2) |
|
pooled_output = self.pooler(sequence_output, extended_input_mask) |
|
|
|
|
|
outputs = (sequence_output, pooled_output,) + encoder_outputs[1:] |
|
return outputs |
|
|
|
|
|
@registry.register_task_model('masked_language_modeling', 'resnet') |
|
class ProteinResNetForMaskedLM(ProteinResNetAbstractModel): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.resnet = ProteinResNetModel(config) |
|
self.mlm = MLMHead( |
|
config.hidden_size, config.vocab_size, config.hidden_act, config.layer_norm_eps, |
|
ignore_index=-1) |
|
|
|
self.init_weights() |
|
self.tie_weights() |
|
|
|
def tie_weights(self): |
|
""" Make sure we are sharing the input and output embeddings. |
|
Export to TorchScript can't handle parameter sharing so we are cloning them instead. |
|
""" |
|
self._tie_or_clone_weights(self.mlm.decoder, |
|
self.resnet.embeddings.word_embeddings) |
|
|
|
def forward(self, |
|
input_ids, |
|
input_mask=None, |
|
targets=None): |
|
|
|
outputs = self.resnet(input_ids, input_mask=input_mask) |
|
|
|
sequence_output, pooled_output = outputs[:2] |
|
outputs = self.mlm(sequence_output, targets) + outputs[:2] |
|
|
|
return outputs |
|
|
|
|
|
@registry.register_task_model('fluorescence', 'resnet') |
|
@registry.register_task_model('stability', 'resnet') |
|
class ProteinResNetForValuePrediction(ProteinResNetAbstractModel): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.resnet = ProteinResNetModel(config) |
|
self.predict = ValuePredictionHead(config.hidden_size) |
|
self.freeze_embedding = config.freeze_embedding |
|
self.init_weights() |
|
|
|
def forward(self, input_ids, input_mask=None, targets=None): |
|
if self.freeze_embedding: |
|
self.resnet.train(False) |
|
|
|
outputs = self.resnet(input_ids, input_mask=input_mask) |
|
|
|
sequence_output, pooled_output = outputs[:2] |
|
outputs = self.predict(pooled_output, targets) + outputs[2:] |
|
|
|
return outputs |
|
|
|
|
|
@registry.register_task_model('remote_homology', 'resnet') |
|
class ProteinResNetForSequenceClassification(ProteinResNetAbstractModel): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.resnet = ProteinResNetModel(config) |
|
self.classify = SequenceClassificationHead(config.hidden_size, config.num_labels) |
|
self.freeze_embedding = config.freeze_embedding |
|
|
|
self.init_weights() |
|
|
|
def forward(self, input_ids, input_mask=None, targets=None): |
|
if self.freeze_embedding: |
|
self.resnet.train(False) |
|
|
|
outputs = self.resnet(input_ids, input_mask=input_mask) |
|
|
|
sequence_output, pooled_output = outputs[:2] |
|
outputs = self.classify(pooled_output, targets) + outputs[2:] |
|
|
|
return outputs |
|
|
|
|
|
@registry.register_task_model('secondary_structure', 'resnet') |
|
class ProteinResNetForSequenceToSequenceClassification(ProteinResNetAbstractModel): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.resnet = ProteinResNetModel(config) |
|
self.classify = SequenceToSequenceClassificationHead( |
|
config.hidden_size, config.num_labels, ignore_index=-1) |
|
|
|
self.init_weights() |
|
|
|
def forward(self, input_ids, input_mask=None, targets=None): |
|
|
|
outputs = self.resnet(input_ids, input_mask=input_mask) |
|
|
|
sequence_output, pooled_output = outputs[:2] |
|
outputs = self.classify(sequence_output, targets) + outputs[2:] |
|
|
|
return outputs |
|
|
|
|
|
@registry.register_task_model('contact_prediction', 'resnet') |
|
class ProteinResNetForContactPrediction(ProteinResNetAbstractModel): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.resnet = ProteinResNetModel(config) |
|
self.predict = PairwiseContactPredictionHead(config.hidden_size, ignore_index=-1) |
|
|
|
self.init_weights() |
|
|
|
def forward(self, input_ids, protein_length, input_mask=None, targets=None): |
|
|
|
outputs = self.resnet(input_ids, input_mask=input_mask) |
|
|
|
sequence_output, pooled_output = outputs[:2] |
|
outputs = self.predict(sequence_output, protein_length, targets) + outputs[2:] |
|
|
|
return outputs |
|
|