File size: 14,656 Bytes
212111c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import typing
import logging
import torch
import torch.nn as nn
from .modeling_utils import ProteinConfig
from .modeling_utils import ProteinModel
from .modeling_utils import get_activation_fn
from .modeling_utils import MLMHead
from .modeling_utils import LayerNorm
from .modeling_utils import ValuePredictionHead
from .modeling_utils import SequenceClassificationHead
from .modeling_utils import SequenceToSequenceClassificationHead
from .modeling_utils import PairwiseContactPredictionHead
from ..registry import registry
logger = logging.getLogger(__name__)
RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP: typing.Dict[str, str] = {}
RESNET_PRETRAINED_MODEL_ARCHIVE_MAP: typing.Dict[str, str] = {}
class ProteinResNetConfig(ProteinConfig):
pretrained_config_archive_map = RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP
def __init__(self,
vocab_size: int = 30,
hidden_size: int = 512,
num_hidden_layers: int = 30,
hidden_act: str = "gelu",
hidden_dropout_prob: float = 0.1,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
temporal_pooling: str = 'attention',
freeze_embedding: bool = False,
**kwargs):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.num_hidden_layers = num_hidden_layers
self.hidden_size = hidden_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.temporal_pooling = temporal_pooling
self.freeze_embedding = freeze_embedding
class MaskedConv1d(nn.Conv1d):
def forward(self, x, input_mask=None):
if input_mask is not None:
x = x * input_mask
return super().forward(x)
class ProteinResNetLayerNorm(nn.Module):
def __init__(self, config):
super().__init__()
self.norm = LayerNorm(config.hidden_size)
def forward(self, x):
return self.norm(x.transpose(1, 2)).transpose(1, 2)
class ProteinResNetBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.conv1 = MaskedConv1d(
config.hidden_size, config.hidden_size, 3, padding=1, bias=False)
# self.bn1 = nn.BatchNorm1d(config.hidden_size)
self.bn1 = ProteinResNetLayerNorm(config)
self.conv2 = MaskedConv1d(
config.hidden_size, config.hidden_size, 3, padding=1, bias=False)
# self.bn2 = nn.BatchNorm1d(config.hidden_size)
self.bn2 = ProteinResNetLayerNorm(config)
self.activation_fn = get_activation_fn(config.hidden_act)
def forward(self, x, input_mask=None):
identity = x
out = self.conv1(x, input_mask)
out = self.bn1(out)
out = self.activation_fn(out)
out = self.conv2(out, input_mask)
out = self.bn2(out)
out += identity
out = self.activation_fn(out)
return out
class ProteinResNetEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config):
super().__init__()
embed_dim = config.hidden_size
self.word_embeddings = nn.Embedding(config.vocab_size, embed_dim, padding_idx=0)
inverse_frequency = 1 / (10000 ** (torch.arange(0.0, embed_dim, 2.0) / embed_dim))
self.register_buffer('inverse_frequency', inverse_frequency)
self.layer_norm = LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids):
words_embeddings = self.word_embeddings(input_ids)
seq_length = input_ids.size(1)
position_ids = torch.arange(
seq_length - 1, -1, -1.0,
dtype=words_embeddings.dtype,
device=words_embeddings.device)
sinusoidal_input = torch.ger(position_ids, self.inverse_frequency)
position_embeddings = torch.cat([sinusoidal_input.sin(), sinusoidal_input.cos()], -1)
position_embeddings = position_embeddings.unsqueeze(0)
embeddings = words_embeddings + position_embeddings
embeddings = self.layer_norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class ProteinResNetPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.attention_weights = nn.Linear(config.hidden_size, 1)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
self.temporal_pooling = config.temporal_pooling
self._la_w1 = nn.Conv1d(config.hidden_size, int(config.hidden_size/2), 5, padding=2)
self._la_w2 = nn.Conv1d(config.hidden_size, int(config.hidden_size/2), 5, padding=2)
self._la_mlp = nn.Linear(config.hidden_size, config.hidden_size)
def forward(self, hidden_states, mask=None):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
if self.temporal_pooling == 'mean':
return hidden_states.mean(dim=1)
if self.temporal_pooling == 'max':
return hidden_states.max(dim=1)
if self.temporal_pooling == 'concat':
_temp = hidden_states.reshape(hidden_states.shape[0], -1)
return torch.nn.functional.pad(_temp, (0, 2048 - _temp.shape[1]))
if self.temporal_pooling == 'meanmax':
_mean = hidden_states.mean(dim=1)
_max = hidden_states.max(dim=1)
return torch.cat([_mean, _max])
if self.temporal_pooling == 'topmax':
val, _ = torch.topk(hidden_states, k=5, dim=1)
return val.mean(dim=1)
if self.temporal_pooling == 'light_attention':
_temp = hidden_states.permute(0,2,1)
a = self._la_w1(_temp).softmax(dim=-1)
v = self._la_w2(_temp)
v_max = v.max(dim=-1).values
v_sum = (a * v).sum(dim=-1)
return self._la_mlp(torch.cat([v_max, v_sum], dim=1))
attention_scores = self.attention_weights(hidden_states)
if mask is not None:
attention_scores += -10000. * (1 - mask)
attention_weights = torch.softmax(attention_scores, -1)
weighted_mean_embedding = torch.matmul(
hidden_states.transpose(1, 2), attention_weights).squeeze(2)
pooled_output = self.dense(weighted_mean_embedding)
pooled_output = self.activation(pooled_output)
return pooled_output
class ResNetEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.output_hidden_states = config.output_hidden_states
self.layer = nn.ModuleList(
[ProteinResNetBlock(config) for _ in range(config.num_hidden_layers)])
def forward(self, hidden_states, input_mask=None):
all_hidden_states = ()
for layer_module in self.layer:
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = layer_module(hidden_states, input_mask)
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
return outputs
class ProteinResNetAbstractModel(ProteinModel):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
config_class = ProteinResNetConfig
pretrained_model_archive_map = RESNET_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix = "resnet"
def __init__(self, config):
super().__init__(config)
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
if module.bias is not None:
module.bias.data.zero_()
# elif isinstance(module, ProteinResNetBlock):
# nn.init.constant_(module.bn2.weight, 0)
@registry.register_task_model('embed', 'resnet')
class ProteinResNetModel(ProteinResNetAbstractModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = ProteinResNetEmbeddings(config)
self.encoder = ResNetEncoder(config)
self.pooler = ProteinResNetPooler(config)
self.init_weights()
def forward(self,
input_ids,
input_mask=None):
if input_mask is not None and torch.any(input_mask != 1):
extended_input_mask = input_mask.unsqueeze(2)
# fp16 compatibility
extended_input_mask = extended_input_mask.to(
dtype=next(self.parameters()).dtype)
else:
extended_input_mask = None
embedding_output = self.embeddings(input_ids)
embedding_output = embedding_output.transpose(1, 2)
if extended_input_mask is not None:
extended_input_mask = extended_input_mask.transpose(1, 2)
encoder_outputs = self.encoder(embedding_output, extended_input_mask)
sequence_output = encoder_outputs[0]
sequence_output = sequence_output.transpose(1, 2).contiguous()
# sequence_output = encoder_outputs[0]
if extended_input_mask is not None:
extended_input_mask = extended_input_mask.transpose(1, 2)
pooled_output = self.pooler(sequence_output, extended_input_mask)
# add hidden_states and attentions if they are here
outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]
return outputs # sequence_output, pooled_output, (hidden_states)
@registry.register_task_model('masked_language_modeling', 'resnet')
class ProteinResNetForMaskedLM(ProteinResNetAbstractModel):
def __init__(self, config):
super().__init__(config)
self.resnet = ProteinResNetModel(config)
self.mlm = MLMHead(
config.hidden_size, config.vocab_size, config.hidden_act, config.layer_norm_eps,
ignore_index=-1)
self.init_weights()
self.tie_weights()
def tie_weights(self):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
self._tie_or_clone_weights(self.mlm.decoder,
self.resnet.embeddings.word_embeddings)
def forward(self,
input_ids,
input_mask=None,
targets=None):
outputs = self.resnet(input_ids, input_mask=input_mask)
sequence_output, pooled_output = outputs[:2]
outputs = self.mlm(sequence_output, targets) + outputs[:2]
# (loss), prediction_scores, (hidden_states), (attentions)
return outputs
@registry.register_task_model('fluorescence', 'resnet')
@registry.register_task_model('stability', 'resnet')
class ProteinResNetForValuePrediction(ProteinResNetAbstractModel):
def __init__(self, config):
super().__init__(config)
self.resnet = ProteinResNetModel(config)
self.predict = ValuePredictionHead(config.hidden_size)
self.freeze_embedding = config.freeze_embedding
self.init_weights()
def forward(self, input_ids, input_mask=None, targets=None):
if self.freeze_embedding:
self.resnet.train(False)
outputs = self.resnet(input_ids, input_mask=input_mask)
sequence_output, pooled_output = outputs[:2]
outputs = self.predict(pooled_output, targets) + outputs[2:]
# (loss), prediction_scores, (hidden_states), (attentions)
return outputs
@registry.register_task_model('remote_homology', 'resnet')
class ProteinResNetForSequenceClassification(ProteinResNetAbstractModel):
def __init__(self, config):
super().__init__(config)
self.resnet = ProteinResNetModel(config)
self.classify = SequenceClassificationHead(config.hidden_size, config.num_labels)
self.freeze_embedding = config.freeze_embedding
self.init_weights()
def forward(self, input_ids, input_mask=None, targets=None):
if self.freeze_embedding:
self.resnet.train(False)
outputs = self.resnet(input_ids, input_mask=input_mask)
sequence_output, pooled_output = outputs[:2]
outputs = self.classify(pooled_output, targets) + outputs[2:]
# (loss), prediction_scores, (hidden_states), (attentions)
return outputs
@registry.register_task_model('secondary_structure', 'resnet')
class ProteinResNetForSequenceToSequenceClassification(ProteinResNetAbstractModel):
def __init__(self, config):
super().__init__(config)
self.resnet = ProteinResNetModel(config)
self.classify = SequenceToSequenceClassificationHead(
config.hidden_size, config.num_labels, ignore_index=-1)
self.init_weights()
def forward(self, input_ids, input_mask=None, targets=None):
outputs = self.resnet(input_ids, input_mask=input_mask)
sequence_output, pooled_output = outputs[:2]
outputs = self.classify(sequence_output, targets) + outputs[2:]
# (loss), prediction_scores, (hidden_states), (attentions)
return outputs
@registry.register_task_model('contact_prediction', 'resnet')
class ProteinResNetForContactPrediction(ProteinResNetAbstractModel):
def __init__(self, config):
super().__init__(config)
self.resnet = ProteinResNetModel(config)
self.predict = PairwiseContactPredictionHead(config.hidden_size, ignore_index=-1)
self.init_weights()
def forward(self, input_ids, protein_length, input_mask=None, targets=None):
outputs = self.resnet(input_ids, input_mask=input_mask)
sequence_output, pooled_output = outputs[:2]
outputs = self.predict(sequence_output, protein_length, targets) + outputs[2:]
# (loss), prediction_scores, (hidden_states), (attentions)
return outputs
|