GH29BERT / tape /models /modeling_bert.py
KeXing
Upload 26 files
212111c
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
# Modified by Roshan Rao
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model. """
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
import math
import torch
from torch import nn
from torch.utils.checkpoint import checkpoint
from .modeling_utils import ProteinConfig
from .modeling_utils import ProteinModel
from .modeling_utils import prune_linear_layer
from .modeling_utils import get_activation_fn
from .modeling_utils import LayerNorm
from .modeling_utils import MLMHead
from .modeling_utils import ValuePredictionHead
from .modeling_utils import SequenceClassificationHead
from .modeling_utils import SequenceToSequenceClassificationHead
from .modeling_utils import PairwiseContactPredictionHead
from ..registry import registry
logger = logging.getLogger(__name__)
URL_PREFIX = "https://s3.amazonaws.com/proteindata/pytorch-models/"
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
'bert-base': URL_PREFIX + "bert-base-pytorch_model.bin",
}
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
'bert-base': URL_PREFIX + "bert-base-config.json"
}
class ProteinBertConfig(ProteinConfig):
r"""
:class:`~pytorch_transformers.ProteinBertConfig` is the configuration class to store the
configuration of a `ProteinBertModel`.
Arguments:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in
`ProteinBertModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the ProteinBert encoder.
num_attention_heads: Number of attention heads for each attention layer in
the ProteinBert encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the ProteinBert encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`ProteinBertModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
layer_norm_eps: The epsilon used by LayerNorm.
"""
pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP
def __init__(self,
vocab_size: int = 30,
hidden_size: int = 768,
num_hidden_layers: int = 12,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: str = "gelu",
hidden_dropout_prob: float = 0.1,
attention_probs_dropout_prob: float = 0.1,
max_position_embeddings: int = 8096,
type_vocab_size: int = 2,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
temporal_pooling: str = 'attention',
freeze_embedding: bool = False,
**kwargs):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.temporal_pooling = temporal_pooling
self.freeze_embedding = freeze_embedding
class ProteinBertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size, padding_idx=0)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be
# able to load any TensorFlow checkpoint file
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None, position_ids=None):
seq_length = input_ids.size(1)
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = words_embeddings + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class ProteinBertSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.output_attentions = config.output_attentions
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in
# ProteinBertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original ProteinBert paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) \
if self.output_attentions else (context_layer,)
return outputs
class ProteinBertSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class ProteinBertAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = ProteinBertSelfAttention(config)
self.output = ProteinBertSelfOutput(config)
def prune_heads(self, heads):
if len(heads) == 0:
return
mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
for head in heads:
mask[head] = 0
mask = mask.view(-1).contiguous().eq(1)
index = torch.arange(len(mask))[mask].long()
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
def forward(self, input_tensor, attention_mask):
self_outputs = self.self(input_tensor, attention_mask)
attention_output = self.output(self_outputs[0], input_tensor)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class ProteinBertIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_activation_fn(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class ProteinBertOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class ProteinBertLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = ProteinBertAttention(config)
self.intermediate = ProteinBertIntermediate(config)
self.output = ProteinBertOutput(config)
def forward(self, hidden_states, attention_mask):
attention_outputs = self.attention(hidden_states, attention_mask)
attention_output = attention_outputs[0]
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
return outputs
class ProteinBertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.layer = nn.ModuleList(
[ProteinBertLayer(config) for _ in range(config.num_hidden_layers)])
def run_function(self, start, chunk_size):
def custom_forward(hidden_states, attention_mask):
all_hidden_states = ()
all_attentions = ()
chunk_slice = slice(start, start + chunk_size)
for layer in self.layer[chunk_slice]:
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer(hidden_states, attention_mask)
hidden_states = layer_outputs[0]
if self.output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
if self.output_attentions:
outputs = outputs + (all_attentions,)
return outputs
return custom_forward
def forward(self, hidden_states, attention_mask, chunks=None):
all_hidden_states = ()
all_attentions = ()
if chunks is not None:
assert isinstance(chunks, int)
chunk_size = (len(self.layer) + chunks - 1) // chunks
for start in range(0, len(self.layer), chunk_size):
outputs = checkpoint(self.run_function(start, chunk_size),
hidden_states, attention_mask)
if self.output_hidden_states:
all_hidden_states = all_hidden_states + outputs[1]
if self.output_attentions:
all_attentions = all_attentions + outputs[-1]
hidden_states = outputs[0]
else:
for i, layer_module in enumerate(self.layer):
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(hidden_states, attention_mask)
hidden_states = layer_outputs[0]
if self.output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
if self.output_attentions:
outputs = outputs + (all_attentions,)
return outputs # outputs, (hidden states), (attentions)
class ProteinBertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
self.temporal_pooling = config.temporal_pooling
self._la_w1 = nn.Conv1d(config.hidden_size, int(config.hidden_size/2), 5, padding=2)
self._la_w2 = nn.Conv1d(config.hidden_size, int(config.hidden_size/2), 5, padding=2)
self._la_mlp = nn.Linear(config.hidden_size, config.hidden_size)
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
if self.temporal_pooling == 'mean':
return hidden_states.mean(dim=1)
if self.temporal_pooling == 'max':
return hidden_states.max(dim=1)
if self.temporal_pooling == 'concat':
_temp = hidden_states.reshape(hidden_states.shape[0], -1)
return torch.nn.functional.pad(_temp, (0, 2048 - _temp.shape[1]))
if self.temporal_pooling == 'topmax':
val, _ = torch.topk(hidden_states, k=5, dim=1)
return val.mean(dim=1)
if self.temporal_pooling == 'light_attention':
_temp = hidden_states.permute(0,2,1)
a = self._la_w1(_temp).softmax(dim=-1)
v = self._la_w2(_temp)
v_max = v.max(dim=-1).values
v_sum = (a * v).sum(dim=-1)
return self._la_mlp(torch.cat([v_max, v_sum], dim=1))
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class ProteinBertAbstractModel(ProteinModel):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
config_class = ProteinBertConfig
pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix = "bert"
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
@registry.register_task_model('embed', 'transformer')
class ProteinBertModel(ProteinBertAbstractModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = ProteinBertEmbeddings(config)
self.encoder = ProteinBertEncoder(config)
self.pooler = ProteinBertPooler(config)
self.init_weights()
def _resize_token_embeddings(self, new_num_tokens):
old_embeddings = self.embeddings.word_embeddings
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
self.embeddings.word_embeddings = new_embeddings
return self.embeddings.word_embeddings
def _prune_heads(self, heads_to_prune):
""" Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
See base class ProteinModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def forward(self,
input_ids,
input_mask=None):
if input_mask is None:
input_mask = torch.ones_like(input_ids)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = input_mask.unsqueeze(1).unsqueeze(2)
# Since input_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(
dtype=torch.float32) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
embedding_output = self.embeddings(input_ids)
encoder_outputs = self.encoder(embedding_output,
extended_attention_mask,
chunks=None)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output)
# add hidden_states and attentions if they are here
outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]
return outputs # sequence_output, pooled_output, (hidden_states), (attentions)
@registry.register_task_model('masked_language_modeling', 'transformer')
class ProteinBertForMaskedLM(ProteinBertAbstractModel):
def __init__(self, config):
super().__init__(config)
self.bert = ProteinBertModel(config)
self.mlm = MLMHead(
config.hidden_size, config.vocab_size, config.hidden_act, config.layer_norm_eps,
ignore_index=-1)
self.init_weights()
self.tie_weights()
def tie_weights(self):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
self._tie_or_clone_weights(self.mlm.decoder,
self.bert.embeddings.word_embeddings)
def forward(self,
input_ids,
input_mask=None,
targets=None):
outputs = self.bert(input_ids, input_mask=input_mask)
sequence_output, pooled_output = outputs[:2]
# add hidden states and attention if they are here
outputs = self.mlm(sequence_output, targets) + outputs[:2]
# (loss), prediction_scores, (hidden_states), (attentions)
return outputs
@registry.register_task_model('fluorescence', 'transformer')
@registry.register_task_model('stability', 'transformer')
class ProteinBertForValuePrediction(ProteinBertAbstractModel):
def __init__(self, config):
super().__init__(config)
self.bert = ProteinBertModel(config)
self.predict = ValuePredictionHead(config.hidden_size)
self.freeze_embedding = config.freeze_embedding
self.init_weights()
def forward(self, input_ids, input_mask=None, targets=None):
if self.freeze_embedding:
self.bert.train(False)
outputs = self.bert(input_ids, input_mask=input_mask)
sequence_output, pooled_output = outputs[:2]
outputs = self.predict(pooled_output, targets) + outputs[2:]
# (loss), prediction_scores, (hidden_states), (attentions)
return outputs
@registry.register_task_model('remote_homology', 'transformer')
class ProteinBertForSequenceClassification(ProteinBertAbstractModel):
def __init__(self, config):
super().__init__(config)
self.bert = ProteinBertModel(config)
self.classify = SequenceClassificationHead(
config.hidden_size, config.num_labels)
self.freeze_embedding = config.freeze_embedding
self.init_weights()
def forward(self, input_ids, input_mask=None, targets=None):
if self.freeze_embedding:
self.bert.train(False)
outputs = self.bert(input_ids, input_mask=input_mask)
sequence_output, pooled_output = outputs[:2]
outputs = self.classify(pooled_output, targets) + outputs[2:]
# (loss), prediction_scores, (hidden_states), (attentions)
return outputs
@registry.register_task_model('secondary_structure', 'transformer')
class ProteinBertForSequenceToSequenceClassification(ProteinBertAbstractModel):
def __init__(self, config):
super().__init__(config)
self.bert = ProteinBertModel(config)
self.classify = SequenceToSequenceClassificationHead(
config.hidden_size, config.num_labels, ignore_index=-1)
self.init_weights()
def forward(self, input_ids, input_mask=None, targets=None):
outputs = self.bert(input_ids, input_mask=input_mask)
sequence_output, pooled_output = outputs[:2]
outputs = self.classify(sequence_output, targets) + outputs[2:]
# (loss), prediction_scores, (hidden_states), (attentions)
return outputs
@registry.register_task_model('contact_prediction', 'transformer')
class ProteinBertForContactPrediction(ProteinBertAbstractModel):
def __init__(self, config):
super().__init__(config)
self.bert = ProteinBertModel(config)
self.predict = PairwiseContactPredictionHead(config.hidden_size, ignore_index=-1)
self.init_weights()
def forward(self, input_ids, protein_length, input_mask=None, targets=None):
outputs = self.bert(input_ids, input_mask=input_mask)
sequence_output, pooled_output = outputs[:2]
outputs = self.predict(sequence_output, protein_length, targets) + outputs[2:]
# (loss), prediction_scores, (hidden_states), (attentions)
return outputs