File size: 25,793 Bytes
212111c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
# Modified by Roshan Rao
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model. """

from __future__ import absolute_import, division, print_function, unicode_literals

import logging
import math

import torch
from torch import nn
from torch.utils.checkpoint import checkpoint

from .modeling_utils import ProteinConfig
from .modeling_utils import ProteinModel
from .modeling_utils import prune_linear_layer
from .modeling_utils import get_activation_fn
from .modeling_utils import LayerNorm
from .modeling_utils import MLMHead
from .modeling_utils import ValuePredictionHead
from .modeling_utils import SequenceClassificationHead
from .modeling_utils import SequenceToSequenceClassificationHead
from .modeling_utils import PairwiseContactPredictionHead
from ..registry import registry

logger = logging.getLogger(__name__)

URL_PREFIX = "https://s3.amazonaws.com/proteindata/pytorch-models/"
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'bert-base': URL_PREFIX + "bert-base-pytorch_model.bin",
}
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'bert-base': URL_PREFIX + "bert-base-config.json"
}


class ProteinBertConfig(ProteinConfig):
    r"""
        :class:`~pytorch_transformers.ProteinBertConfig` is the configuration class to store the
        configuration of a `ProteinBertModel`.


        Arguments:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in
                `ProteinBertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the ProteinBert encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the ProteinBert encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the ProteinBert encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `ProteinBertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.
    """
    pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP

    def __init__(self,
                 vocab_size: int = 30,
                 hidden_size: int = 768,
                 num_hidden_layers: int = 12,
                 num_attention_heads: int = 12,
                 intermediate_size: int = 3072,
                 hidden_act: str = "gelu",
                 hidden_dropout_prob: float = 0.1,
                 attention_probs_dropout_prob: float = 0.1,
                 max_position_embeddings: int = 8096,
                 type_vocab_size: int = 2,
                 initializer_range: float = 0.02,
                 layer_norm_eps: float = 1e-12,
                 temporal_pooling: str = 'attention',
                 freeze_embedding: bool = False,
                 **kwargs):
        super().__init__(**kwargs)
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.temporal_pooling = temporal_pooling
        self.freeze_embedding = freeze_embedding


class ProteinBertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(
            config.vocab_size, config.hidden_size, padding_idx=0)
        self.position_embeddings = nn.Embedding(
            config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be
        # able to load any TensorFlow checkpoint file
        self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None, position_ids=None):
        seq_length = input_ids.size(1)
        if position_ids is None:
            position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class ProteinBertSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
        self.output_attentions = config.output_attentions

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask):
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in
        # ProteinBertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original ProteinBert paper.
        attention_probs = self.dropout(attention_probs)

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) \
            if self.output_attentions else (context_layer,)
        return outputs


class ProteinBertSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class ProteinBertAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = ProteinBertSelfAttention(config)
        self.output = ProteinBertSelfOutput(config)

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
        # Update hyper params
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads

    def forward(self, input_tensor, attention_mask):
        self_outputs = self.self(input_tensor, attention_mask)
        attention_output = self.output(self_outputs[0], input_tensor)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


class ProteinBertIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = get_activation_fn(config.hidden_act)
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class ProteinBertOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class ProteinBertLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.attention = ProteinBertAttention(config)
        self.intermediate = ProteinBertIntermediate(config)
        self.output = ProteinBertOutput(config)

    def forward(self, hidden_states, attention_mask):
        attention_outputs = self.attention(hidden_states, attention_mask)
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        outputs = (layer_output,) + attention_outputs[1:]  # add attentions if we output them
        return outputs


class ProteinBertEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
        self.layer = nn.ModuleList(
            [ProteinBertLayer(config) for _ in range(config.num_hidden_layers)])

    def run_function(self, start, chunk_size):
        def custom_forward(hidden_states, attention_mask):
            all_hidden_states = ()
            all_attentions = ()
            chunk_slice = slice(start, start + chunk_size)
            for layer in self.layer[chunk_slice]:
                if self.output_hidden_states:
                    all_hidden_states = all_hidden_states + (hidden_states,)
                layer_outputs = layer(hidden_states, attention_mask)
                hidden_states = layer_outputs[0]

                if self.output_attentions:
                    all_attentions = all_attentions + (layer_outputs[1],)

            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)
            outputs = (hidden_states,)
            if self.output_hidden_states:
                outputs = outputs + (all_hidden_states,)
            if self.output_attentions:
                outputs = outputs + (all_attentions,)
            return outputs

        return custom_forward

    def forward(self, hidden_states, attention_mask, chunks=None):
        all_hidden_states = ()
        all_attentions = ()

        if chunks is not None:
            assert isinstance(chunks, int)
            chunk_size = (len(self.layer) + chunks - 1) // chunks
            for start in range(0, len(self.layer), chunk_size):
                outputs = checkpoint(self.run_function(start, chunk_size),
                                     hidden_states, attention_mask)
                if self.output_hidden_states:
                    all_hidden_states = all_hidden_states + outputs[1]
                if self.output_attentions:
                    all_attentions = all_attentions + outputs[-1]
                hidden_states = outputs[0]
        else:
            for i, layer_module in enumerate(self.layer):
                if self.output_hidden_states:
                    all_hidden_states = all_hidden_states + (hidden_states,)

                layer_outputs = layer_module(hidden_states, attention_mask)
                hidden_states = layer_outputs[0]

                if self.output_attentions:
                    all_attentions = all_attentions + (layer_outputs[1],)

            # Add last layer
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            outputs = (hidden_states,)
            if self.output_hidden_states:
                outputs = outputs + (all_hidden_states,)
            if self.output_attentions:
                outputs = outputs + (all_attentions,)
        return outputs  # outputs, (hidden states), (attentions)


class ProteinBertPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()
        self.temporal_pooling = config.temporal_pooling
        self._la_w1 = nn.Conv1d(config.hidden_size, int(config.hidden_size/2), 5, padding=2)
        self._la_w2 = nn.Conv1d(config.hidden_size, int(config.hidden_size/2), 5, padding=2)
        self._la_mlp = nn.Linear(config.hidden_size, config.hidden_size)

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        if self.temporal_pooling == 'mean':
            return hidden_states.mean(dim=1)
        if self.temporal_pooling == 'max':
            return hidden_states.max(dim=1)
        if self.temporal_pooling == 'concat':
            _temp = hidden_states.reshape(hidden_states.shape[0], -1)
            return torch.nn.functional.pad(_temp, (0, 2048 - _temp.shape[1]))
        if self.temporal_pooling == 'topmax':
            val, _ = torch.topk(hidden_states, k=5, dim=1)
            return val.mean(dim=1)
        if self.temporal_pooling == 'light_attention':
            _temp = hidden_states.permute(0,2,1)
            a = self._la_w1(_temp).softmax(dim=-1)
            v = self._la_w2(_temp)
            v_max = v.max(dim=-1).values
            v_sum = (a * v).sum(dim=-1)
            return self._la_mlp(torch.cat([v_max, v_sum], dim=1))

        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class ProteinBertAbstractModel(ProteinModel):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    config_class = ProteinBertConfig
    pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "bert"

    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


@registry.register_task_model('embed', 'transformer')
class ProteinBertModel(ProteinBertAbstractModel):

    def __init__(self, config):
        super().__init__(config)

        self.embeddings = ProteinBertEmbeddings(config)
        self.encoder = ProteinBertEncoder(config)
        self.pooler = ProteinBertPooler(config)

        self.init_weights()

    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.embeddings.word_embeddings
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.embeddings.word_embeddings = new_embeddings
        return self.embeddings.word_embeddings

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class ProteinModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def forward(self,
                input_ids,
                input_mask=None):
        if input_mask is None:
            input_mask = torch.ones_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = input_mask.unsqueeze(1).unsqueeze(2)

        # Since input_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(
            dtype=torch.float32)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        embedding_output = self.embeddings(input_ids)
        encoder_outputs = self.encoder(embedding_output,
                                       extended_attention_mask,
                                       chunks=None)
        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output)

        # add hidden_states and attentions if they are here
        outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)


@registry.register_task_model('masked_language_modeling', 'transformer')
class ProteinBertForMaskedLM(ProteinBertAbstractModel):

    def __init__(self, config):
        super().__init__(config)

        self.bert = ProteinBertModel(config)
        self.mlm = MLMHead(
            config.hidden_size, config.vocab_size, config.hidden_act, config.layer_norm_eps,
            ignore_index=-1)

        self.init_weights()
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
        self._tie_or_clone_weights(self.mlm.decoder,
                                   self.bert.embeddings.word_embeddings)

    def forward(self,
                input_ids,
                input_mask=None,
                targets=None):

        outputs = self.bert(input_ids, input_mask=input_mask)

        sequence_output, pooled_output = outputs[:2]
        # add hidden states and attention if they are here
        outputs = self.mlm(sequence_output, targets) + outputs[:2]
        # (loss), prediction_scores, (hidden_states), (attentions)
        return outputs


@registry.register_task_model('fluorescence', 'transformer')
@registry.register_task_model('stability', 'transformer')
class ProteinBertForValuePrediction(ProteinBertAbstractModel):

    def __init__(self, config):
        super().__init__(config)

        self.bert = ProteinBertModel(config)
        self.predict = ValuePredictionHead(config.hidden_size)
        self.freeze_embedding = config.freeze_embedding
        self.init_weights()

    def forward(self, input_ids, input_mask=None, targets=None):
        if self.freeze_embedding:
            self.bert.train(False)
        outputs = self.bert(input_ids, input_mask=input_mask)

        sequence_output, pooled_output = outputs[:2]
        outputs = self.predict(pooled_output, targets) + outputs[2:]
        # (loss), prediction_scores, (hidden_states), (attentions)
        return outputs


@registry.register_task_model('remote_homology', 'transformer')
class ProteinBertForSequenceClassification(ProteinBertAbstractModel):

    def __init__(self, config):
        super().__init__(config)

        self.bert = ProteinBertModel(config)
        self.classify = SequenceClassificationHead(
            config.hidden_size, config.num_labels)
        self.freeze_embedding = config.freeze_embedding
        self.init_weights()

    def forward(self, input_ids, input_mask=None, targets=None):
        if self.freeze_embedding:
            self.bert.train(False)
        outputs = self.bert(input_ids, input_mask=input_mask)

        sequence_output, pooled_output = outputs[:2]

        outputs = self.classify(pooled_output, targets) + outputs[2:]
        # (loss), prediction_scores, (hidden_states), (attentions)
        return outputs


@registry.register_task_model('secondary_structure', 'transformer')
class ProteinBertForSequenceToSequenceClassification(ProteinBertAbstractModel):

    def __init__(self, config):
        super().__init__(config)

        self.bert = ProteinBertModel(config)
        self.classify = SequenceToSequenceClassificationHead(
            config.hidden_size, config.num_labels, ignore_index=-1)

        self.init_weights()

    def forward(self, input_ids, input_mask=None, targets=None):

        outputs = self.bert(input_ids, input_mask=input_mask)

        sequence_output, pooled_output = outputs[:2]
        outputs = self.classify(sequence_output, targets) + outputs[2:]
        # (loss), prediction_scores, (hidden_states), (attentions)
        return outputs


@registry.register_task_model('contact_prediction', 'transformer')
class ProteinBertForContactPrediction(ProteinBertAbstractModel):

    def __init__(self, config):
        super().__init__(config)

        self.bert = ProteinBertModel(config)
        self.predict = PairwiseContactPredictionHead(config.hidden_size, ignore_index=-1)

        self.init_weights()

    def forward(self, input_ids, protein_length, input_mask=None, targets=None):

        outputs = self.bert(input_ids, input_mask=input_mask)

        sequence_output, pooled_output = outputs[:2]
        outputs = self.predict(sequence_output, protein_length, targets) + outputs[2:]
        # (loss), prediction_scores, (hidden_states), (attentions)
        return outputs