File size: 25,793 Bytes
212111c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
# Modified by Roshan Rao
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model. """
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
import math
import torch
from torch import nn
from torch.utils.checkpoint import checkpoint
from .modeling_utils import ProteinConfig
from .modeling_utils import ProteinModel
from .modeling_utils import prune_linear_layer
from .modeling_utils import get_activation_fn
from .modeling_utils import LayerNorm
from .modeling_utils import MLMHead
from .modeling_utils import ValuePredictionHead
from .modeling_utils import SequenceClassificationHead
from .modeling_utils import SequenceToSequenceClassificationHead
from .modeling_utils import PairwiseContactPredictionHead
from ..registry import registry
logger = logging.getLogger(__name__)
URL_PREFIX = "https://s3.amazonaws.com/proteindata/pytorch-models/"
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
'bert-base': URL_PREFIX + "bert-base-pytorch_model.bin",
}
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
'bert-base': URL_PREFIX + "bert-base-config.json"
}
class ProteinBertConfig(ProteinConfig):
r"""
:class:`~pytorch_transformers.ProteinBertConfig` is the configuration class to store the
configuration of a `ProteinBertModel`.
Arguments:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in
`ProteinBertModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the ProteinBert encoder.
num_attention_heads: Number of attention heads for each attention layer in
the ProteinBert encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the ProteinBert encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`ProteinBertModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
layer_norm_eps: The epsilon used by LayerNorm.
"""
pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP
def __init__(self,
vocab_size: int = 30,
hidden_size: int = 768,
num_hidden_layers: int = 12,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: str = "gelu",
hidden_dropout_prob: float = 0.1,
attention_probs_dropout_prob: float = 0.1,
max_position_embeddings: int = 8096,
type_vocab_size: int = 2,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
temporal_pooling: str = 'attention',
freeze_embedding: bool = False,
**kwargs):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.temporal_pooling = temporal_pooling
self.freeze_embedding = freeze_embedding
class ProteinBertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size, padding_idx=0)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be
# able to load any TensorFlow checkpoint file
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None, position_ids=None):
seq_length = input_ids.size(1)
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = words_embeddings + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class ProteinBertSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.output_attentions = config.output_attentions
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in
# ProteinBertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original ProteinBert paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) \
if self.output_attentions else (context_layer,)
return outputs
class ProteinBertSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class ProteinBertAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = ProteinBertSelfAttention(config)
self.output = ProteinBertSelfOutput(config)
def prune_heads(self, heads):
if len(heads) == 0:
return
mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
for head in heads:
mask[head] = 0
mask = mask.view(-1).contiguous().eq(1)
index = torch.arange(len(mask))[mask].long()
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
def forward(self, input_tensor, attention_mask):
self_outputs = self.self(input_tensor, attention_mask)
attention_output = self.output(self_outputs[0], input_tensor)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class ProteinBertIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_activation_fn(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class ProteinBertOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class ProteinBertLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = ProteinBertAttention(config)
self.intermediate = ProteinBertIntermediate(config)
self.output = ProteinBertOutput(config)
def forward(self, hidden_states, attention_mask):
attention_outputs = self.attention(hidden_states, attention_mask)
attention_output = attention_outputs[0]
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
return outputs
class ProteinBertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.layer = nn.ModuleList(
[ProteinBertLayer(config) for _ in range(config.num_hidden_layers)])
def run_function(self, start, chunk_size):
def custom_forward(hidden_states, attention_mask):
all_hidden_states = ()
all_attentions = ()
chunk_slice = slice(start, start + chunk_size)
for layer in self.layer[chunk_slice]:
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer(hidden_states, attention_mask)
hidden_states = layer_outputs[0]
if self.output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
if self.output_attentions:
outputs = outputs + (all_attentions,)
return outputs
return custom_forward
def forward(self, hidden_states, attention_mask, chunks=None):
all_hidden_states = ()
all_attentions = ()
if chunks is not None:
assert isinstance(chunks, int)
chunk_size = (len(self.layer) + chunks - 1) // chunks
for start in range(0, len(self.layer), chunk_size):
outputs = checkpoint(self.run_function(start, chunk_size),
hidden_states, attention_mask)
if self.output_hidden_states:
all_hidden_states = all_hidden_states + outputs[1]
if self.output_attentions:
all_attentions = all_attentions + outputs[-1]
hidden_states = outputs[0]
else:
for i, layer_module in enumerate(self.layer):
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(hidden_states, attention_mask)
hidden_states = layer_outputs[0]
if self.output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
if self.output_attentions:
outputs = outputs + (all_attentions,)
return outputs # outputs, (hidden states), (attentions)
class ProteinBertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
self.temporal_pooling = config.temporal_pooling
self._la_w1 = nn.Conv1d(config.hidden_size, int(config.hidden_size/2), 5, padding=2)
self._la_w2 = nn.Conv1d(config.hidden_size, int(config.hidden_size/2), 5, padding=2)
self._la_mlp = nn.Linear(config.hidden_size, config.hidden_size)
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
if self.temporal_pooling == 'mean':
return hidden_states.mean(dim=1)
if self.temporal_pooling == 'max':
return hidden_states.max(dim=1)
if self.temporal_pooling == 'concat':
_temp = hidden_states.reshape(hidden_states.shape[0], -1)
return torch.nn.functional.pad(_temp, (0, 2048 - _temp.shape[1]))
if self.temporal_pooling == 'topmax':
val, _ = torch.topk(hidden_states, k=5, dim=1)
return val.mean(dim=1)
if self.temporal_pooling == 'light_attention':
_temp = hidden_states.permute(0,2,1)
a = self._la_w1(_temp).softmax(dim=-1)
v = self._la_w2(_temp)
v_max = v.max(dim=-1).values
v_sum = (a * v).sum(dim=-1)
return self._la_mlp(torch.cat([v_max, v_sum], dim=1))
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class ProteinBertAbstractModel(ProteinModel):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
config_class = ProteinBertConfig
pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix = "bert"
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
@registry.register_task_model('embed', 'transformer')
class ProteinBertModel(ProteinBertAbstractModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = ProteinBertEmbeddings(config)
self.encoder = ProteinBertEncoder(config)
self.pooler = ProteinBertPooler(config)
self.init_weights()
def _resize_token_embeddings(self, new_num_tokens):
old_embeddings = self.embeddings.word_embeddings
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
self.embeddings.word_embeddings = new_embeddings
return self.embeddings.word_embeddings
def _prune_heads(self, heads_to_prune):
""" Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
See base class ProteinModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def forward(self,
input_ids,
input_mask=None):
if input_mask is None:
input_mask = torch.ones_like(input_ids)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = input_mask.unsqueeze(1).unsqueeze(2)
# Since input_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(
dtype=torch.float32) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
embedding_output = self.embeddings(input_ids)
encoder_outputs = self.encoder(embedding_output,
extended_attention_mask,
chunks=None)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output)
# add hidden_states and attentions if they are here
outputs = (sequence_output, pooled_output,) + encoder_outputs[1:]
return outputs # sequence_output, pooled_output, (hidden_states), (attentions)
@registry.register_task_model('masked_language_modeling', 'transformer')
class ProteinBertForMaskedLM(ProteinBertAbstractModel):
def __init__(self, config):
super().__init__(config)
self.bert = ProteinBertModel(config)
self.mlm = MLMHead(
config.hidden_size, config.vocab_size, config.hidden_act, config.layer_norm_eps,
ignore_index=-1)
self.init_weights()
self.tie_weights()
def tie_weights(self):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
self._tie_or_clone_weights(self.mlm.decoder,
self.bert.embeddings.word_embeddings)
def forward(self,
input_ids,
input_mask=None,
targets=None):
outputs = self.bert(input_ids, input_mask=input_mask)
sequence_output, pooled_output = outputs[:2]
# add hidden states and attention if they are here
outputs = self.mlm(sequence_output, targets) + outputs[:2]
# (loss), prediction_scores, (hidden_states), (attentions)
return outputs
@registry.register_task_model('fluorescence', 'transformer')
@registry.register_task_model('stability', 'transformer')
class ProteinBertForValuePrediction(ProteinBertAbstractModel):
def __init__(self, config):
super().__init__(config)
self.bert = ProteinBertModel(config)
self.predict = ValuePredictionHead(config.hidden_size)
self.freeze_embedding = config.freeze_embedding
self.init_weights()
def forward(self, input_ids, input_mask=None, targets=None):
if self.freeze_embedding:
self.bert.train(False)
outputs = self.bert(input_ids, input_mask=input_mask)
sequence_output, pooled_output = outputs[:2]
outputs = self.predict(pooled_output, targets) + outputs[2:]
# (loss), prediction_scores, (hidden_states), (attentions)
return outputs
@registry.register_task_model('remote_homology', 'transformer')
class ProteinBertForSequenceClassification(ProteinBertAbstractModel):
def __init__(self, config):
super().__init__(config)
self.bert = ProteinBertModel(config)
self.classify = SequenceClassificationHead(
config.hidden_size, config.num_labels)
self.freeze_embedding = config.freeze_embedding
self.init_weights()
def forward(self, input_ids, input_mask=None, targets=None):
if self.freeze_embedding:
self.bert.train(False)
outputs = self.bert(input_ids, input_mask=input_mask)
sequence_output, pooled_output = outputs[:2]
outputs = self.classify(pooled_output, targets) + outputs[2:]
# (loss), prediction_scores, (hidden_states), (attentions)
return outputs
@registry.register_task_model('secondary_structure', 'transformer')
class ProteinBertForSequenceToSequenceClassification(ProteinBertAbstractModel):
def __init__(self, config):
super().__init__(config)
self.bert = ProteinBertModel(config)
self.classify = SequenceToSequenceClassificationHead(
config.hidden_size, config.num_labels, ignore_index=-1)
self.init_weights()
def forward(self, input_ids, input_mask=None, targets=None):
outputs = self.bert(input_ids, input_mask=input_mask)
sequence_output, pooled_output = outputs[:2]
outputs = self.classify(sequence_output, targets) + outputs[2:]
# (loss), prediction_scores, (hidden_states), (attentions)
return outputs
@registry.register_task_model('contact_prediction', 'transformer')
class ProteinBertForContactPrediction(ProteinBertAbstractModel):
def __init__(self, config):
super().__init__(config)
self.bert = ProteinBertModel(config)
self.predict = PairwiseContactPredictionHead(config.hidden_size, ignore_index=-1)
self.init_weights()
def forward(self, input_ids, protein_length, input_mask=None, targets=None):
outputs = self.bert(input_ids, input_mask=input_mask)
sequence_output, pooled_output = outputs[:2]
outputs = self.predict(sequence_output, protein_length, targets) + outputs[2:]
# (loss), prediction_scores, (hidden_states), (attentions)
return outputs
|