File size: 11,225 Bytes
a44ee7a
ebb897b
a44ee7a
ebb897b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import streamlit as st
import streamlit.components.v1 as components

from lettucedetect.models.inference import HallucinationDetector


def create_interactive_text(text: str, spans: list[dict[str, int | float]]) -> str:
    """Create interactive HTML with highlighting and hover effects.

    :param text: The text to create the interactive text for.
    :param spans: The spans to highlight.
    :return: The interactive text.
    """
    html_text = text

    for span in sorted(spans, key=lambda x: x["start"], reverse=True):
        span_text = text[span["start"] : span["end"]]
        highlighted_span = f'<span class="hallucination" title="Confidence: {span["confidence"]:.3f}">{span_text}</span>'
        html_text = html_text[: span["start"]] + highlighted_span + html_text[span["end"] :]

    return f"""
    <style>
        .container {{
            font-family: Arial, sans-serif;
            font-size: 16px;
            line-height: 1.6;
            padding: 20px;
        }}
        .hallucination {{
            background-color: rgba(255, 99, 71, 0.3);
            padding: 2px;
            border-radius: 3px;
            cursor: help;
        }}
        .hallucination:hover {{
            background-color: rgba(255, 99, 71, 0.5);
        }}
    </style>
    <div class="container">{html_text}</div>
    """


# Define examples for each language
LANGUAGE_EXAMPLES = {
    "English (en)": {
        "model_path": "KRLabsOrg/lettucedect-base-modernbert-en-v1",
        "lang": "en",
        "context": "France is a country in Europe. The capital of France is Paris. The population of France is 67 million.",
        "question": "What is the capital of France? What is the population of France?",
        "answer": "The capital of France is Paris. The population of France is 69 million.",
        "output_label": "Predictions"
    },
    "German (de)": {
        "model_path": "KRLabsOrg/lettucedect-210m-eurobert-de-v1",
        "lang": "de",
        "context": "Frankreich ist ein Land in Europa. Die Hauptstadt von Frankreich ist Paris. Die Bevölkerung Frankreichs beträgt 67 Millionen.",
        "question": "Was ist die Hauptstadt von Frankreich? Wie groß ist die Bevölkerung Frankreichs?",
        "answer": "Die Hauptstadt von Frankreich ist Paris. Die Bevölkerung Frankreichs beträgt 69 Millionen.",
        "output_label": "Vorhersagen"
    },
    "French (fr)": {
        "model_path": "KRLabsOrg/lettucedect-210m-eurobert-fr-v1",
        "lang": "fr",
        "context": "La France est un pays d'Europe. La capitale de la France est Paris. La population de la France est de 67 millions.",
        "question": "Quelle est la capitale de la France? Quelle est la population de la France?",
        "answer": "La capitale de la France est Paris. La population de la France est de 69 millions.",
        "output_label": "Prédictions"
    },
    "Spanish (es)": {
        "model_path": "KRLabsOrg/lettucedect-210m-eurobert-es-v1",
        "lang": "es",
        "context": "Francia es un país de Europa. La capital de Francia es París. La población de Francia es de 67 millones.",
        "question": "¿Cuál es la capital de Francia? ¿Cuál es la población de Francia?",
        "answer": "La capital de Francia es París. La población de Francia es de 69 millones.",
        "output_label": "Predicciones"
    },
    "Italian (it)": {
        "model_path": "KRLabsOrg/lettucedect-210m-eurobert-it-v1",
        "lang": "it",
        "context": "La Francia è un paese in Europa. La capitale della Francia è Parigi. La popolazione della Francia è di 67 milioni.",
        "question": "Qual è la capitale della Francia? Qual è la popolazione della Francia?",
        "answer": "La capitale della Francia è Parigi. La popolazione della Francia è di 69 milioni.",
        "output_label": "Previsioni"
    },
    "Polish (pl)": {
        "model_path": "KRLabsOrg/lettucedect-210m-eurobert-pl-v1",
        "lang": "pl",
        "context": "Kopernikanizm to teoria astronomiczna opracowana przez Mikołaja Kopernika, zgodnie z którą Słońce znajduje się w centrum Układu Słonecznego, a Ziemia i inne planety krążą wokół niego. Teoria ta została opublikowana w dziele 'O obrotach sfer niebieskich' w 1543 roku.",
        "question": "Na czym polega teoria kopernikańska i kiedy została opublikowana?",
        "answer": "Teoria kopernikańska zakłada, że Ziemia jest jednym z wielu ciał niebieskich krążących wokół Słońca. Kopernik opracował również zaawansowane równania matematyczne opisujące ruch satelitów, które zostały wykorzystane w XX wieku w programie kosmicznym NASA. Teoria została opublikowana w 1543 roku.",
        "output_label": "Przewidywania"
    },
    "Chinese (cn)": {
        "model_path": "KRLabsOrg/lettucedect-210m-eurobert-cn-v1",
        "lang": "cn",
        "context": "长城是中国古代的伟大防御工程,全长超过21,000公里。它的建造始于公元前7世纪,历经多个朝代。",
        "question": "长城有多长?它是什么时候建造的?",
        "answer": "长城全长约50,000公里。它的建造始于公元前3世纪,仅在秦朝时期。",
        "output_label": "预测"
    },
    "LLM-Based": {
        "method": "llm",
        "lang": "en",
        "context": "France is a country in Europe. The capital of France is Paris. The population of France is 67 million.",
        "question": "What is the capital of France? What is the population of France?",
        "answer": "The capital of France is Paris. The population of France is 69 million.",
        "output_label": "LLM Predictions"
    }
}


def main():
    st.set_page_config(page_title="Lettuce Detective", page_icon="🥬", layout="wide")

    st.image(
        "https://github.com/KRLabsOrg/LettuceDetect/blob/main/assets/lettuce_detective.png?raw=true",
        width=600,
    )

    st.title("LettuceDetect Multilingual Demo 🌍")
    st.markdown("### Detect hallucinations in 7 languages")

    # Create a sidebar for language selection and model options
    with st.sidebar:
        st.header("Settings")
        selected_language = st.selectbox(
            "Select Language",
            list(LANGUAGE_EXAMPLES.keys())
        )
        
        example = LANGUAGE_EXAMPLES[selected_language]
        
        # Only show model size option for transformer-based models
        model_method = example.get("method", "transformer")
        
        if model_method == "transformer":
            model_size = st.radio(
                "Model Size",
                ["Base (210M)", "Large (610M)"],
                index=0,
                help="Base models are faster, large models are more accurate."
            )
            
            # API key not needed for transformer models
            openai_api_key = None
        else:
            # For LLM-based method
            st.info("LLM-based detection requires an OpenAI API key")
            openai_api_key = st.text_input("OpenAI API Key", type="password")
        
        st.markdown("---")
        st.markdown("### About")
        st.markdown(
            "LettuceDetect identifies hallucinations by comparing answers to provided context. "
            "Highlighted text indicates content not supported by the source material."
        )
        st.markdown("[GitHub](https://github.com/KRLabsOrg/LettuceDetect) | [HuggingFace](https://huggingface.co/collections/KRLabsOrg/multilingual-hallucination-detection-682a2549c18ecd32689231ce)")

    # Get the example data for the selected language
    example = LANGUAGE_EXAMPLES[selected_language]
    
    # Adjust model path based on selected size if needed
    if model_method == "transformer":
        model_path = example["model_path"]
        if "base" not in model_path.lower() and "large" not in model_path.lower():
            # Only adjust if it's a numerical size model that can be switched
            if "210m" in model_path.lower() and "Large" in model_size:
                model_path = model_path.replace("210m", "610m")
            elif "610m" in model_path.lower() and "Base" in model_size:
                model_path = model_path.replace("610m", "210m")
    else:
        # For LLM-based method, no model path needed
        model_path = None

    @st.cache_resource
    def load_detector(method, model_path=None, lang=None, api_key=None):
        try:
            import os
            if api_key:
                os.environ["OPENAI_API_KEY"] = api_key
                
            if method == "transformer":
                return HallucinationDetector(
                    method=method,
                    model_path=model_path,
                    lang=lang,
                    trust_remote_code=True
                )
            else:
                # LLM-based method
                return HallucinationDetector(method=method)
        except Exception as e:
            st.error(f"Error loading model: {e}")
            return None

    # Load detector for the selected language
    with st.spinner(f"Loading {selected_language} model..."):
        detector = load_detector(
            method=model_method, 
            model_path=model_path, 
            lang=example["lang"],
            api_key=openai_api_key
        )

    # Create a two-column layout
    col1, col2 = st.columns(2)
    
    with col1:
        st.subheader("Input")
        context = st.text_area(
            "Context",
            example["context"],
            height=150
        )

        question = st.text_area(
            "Question",
            example["question"],
            height=80
        )

        answer = st.text_area(
            "Answer",
            example["answer"],
            height=100
        )

    with col2:
        st.subheader("Results")
        if detector:
            if st.button("Detect Hallucinations", type="primary"):
                with st.spinner("Analyzing..."):
                    predictions = detector.predict(
                        context=[context], question=question, answer=answer, output_format="spans"
                    )
                    
                    if predictions:
                        st.success(f"Found {len(predictions)} hallucination(s)")
                        st.markdown(f"**{example['output_label']}:**")
                        html_content = create_interactive_text(answer, predictions)
                        components.html(html_content, height=200)
                        
                        # Display raw predictions in a collapsible section
                        with st.expander("Raw prediction data"):
                            st.json(predictions)
                    else:
                        st.info("No hallucinations detected")
        else:
            st.error("Model not loaded. Please check your internet connection or try a different language.")

    # Show information about current model
    st.markdown("---")
    if model_method == "transformer":
        st.markdown(f"**Current Model:** {model_path}")
    else:
        st.markdown("**Method:** LLM-based hallucination detection")
    st.markdown(f"**Language:** {example['lang']}")


if __name__ == "__main__":
    main()