Update src/streamlit_app.py
Browse files- src/streamlit_app.py +259 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,261 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import streamlit.components.v1 as components
|
3 |
|
4 |
+
from lettucedetect.models.inference import HallucinationDetector
|
5 |
+
|
6 |
+
|
7 |
+
def create_interactive_text(text: str, spans: list[dict[str, int | float]]) -> str:
|
8 |
+
"""Create interactive HTML with highlighting and hover effects.
|
9 |
+
|
10 |
+
:param text: The text to create the interactive text for.
|
11 |
+
:param spans: The spans to highlight.
|
12 |
+
:return: The interactive text.
|
13 |
+
"""
|
14 |
+
html_text = text
|
15 |
+
|
16 |
+
for span in sorted(spans, key=lambda x: x["start"], reverse=True):
|
17 |
+
span_text = text[span["start"] : span["end"]]
|
18 |
+
highlighted_span = f'<span class="hallucination" title="Confidence: {span["confidence"]:.3f}">{span_text}</span>'
|
19 |
+
html_text = html_text[: span["start"]] + highlighted_span + html_text[span["end"] :]
|
20 |
+
|
21 |
+
return f"""
|
22 |
+
<style>
|
23 |
+
.container {{
|
24 |
+
font-family: Arial, sans-serif;
|
25 |
+
font-size: 16px;
|
26 |
+
line-height: 1.6;
|
27 |
+
padding: 20px;
|
28 |
+
}}
|
29 |
+
.hallucination {{
|
30 |
+
background-color: rgba(255, 99, 71, 0.3);
|
31 |
+
padding: 2px;
|
32 |
+
border-radius: 3px;
|
33 |
+
cursor: help;
|
34 |
+
}}
|
35 |
+
.hallucination:hover {{
|
36 |
+
background-color: rgba(255, 99, 71, 0.5);
|
37 |
+
}}
|
38 |
+
</style>
|
39 |
+
<div class="container">{html_text}</div>
|
40 |
+
"""
|
41 |
+
|
42 |
+
|
43 |
+
# Define examples for each language
|
44 |
+
LANGUAGE_EXAMPLES = {
|
45 |
+
"English (en)": {
|
46 |
+
"model_path": "KRLabsOrg/lettucedect-base-modernbert-en-v1",
|
47 |
+
"lang": "en",
|
48 |
+
"context": "France is a country in Europe. The capital of France is Paris. The population of France is 67 million.",
|
49 |
+
"question": "What is the capital of France? What is the population of France?",
|
50 |
+
"answer": "The capital of France is Paris. The population of France is 69 million.",
|
51 |
+
"output_label": "Predictions"
|
52 |
+
},
|
53 |
+
"German (de)": {
|
54 |
+
"model_path": "KRLabsOrg/lettucedect-210m-eurobert-de-v1",
|
55 |
+
"lang": "de",
|
56 |
+
"context": "Frankreich ist ein Land in Europa. Die Hauptstadt von Frankreich ist Paris. Die Bevölkerung Frankreichs beträgt 67 Millionen.",
|
57 |
+
"question": "Was ist die Hauptstadt von Frankreich? Wie groß ist die Bevölkerung Frankreichs?",
|
58 |
+
"answer": "Die Hauptstadt von Frankreich ist Paris. Die Bevölkerung Frankreichs beträgt 69 Millionen.",
|
59 |
+
"output_label": "Vorhersagen"
|
60 |
+
},
|
61 |
+
"French (fr)": {
|
62 |
+
"model_path": "KRLabsOrg/lettucedect-210m-eurobert-fr-v1",
|
63 |
+
"lang": "fr",
|
64 |
+
"context": "La France est un pays d'Europe. La capitale de la France est Paris. La population de la France est de 67 millions.",
|
65 |
+
"question": "Quelle est la capitale de la France? Quelle est la population de la France?",
|
66 |
+
"answer": "La capitale de la France est Paris. La population de la France est de 69 millions.",
|
67 |
+
"output_label": "Prédictions"
|
68 |
+
},
|
69 |
+
"Spanish (es)": {
|
70 |
+
"model_path": "KRLabsOrg/lettucedect-210m-eurobert-es-v1",
|
71 |
+
"lang": "es",
|
72 |
+
"context": "Francia es un país de Europa. La capital de Francia es París. La población de Francia es de 67 millones.",
|
73 |
+
"question": "¿Cuál es la capital de Francia? ¿Cuál es la población de Francia?",
|
74 |
+
"answer": "La capital de Francia es París. La población de Francia es de 69 millones.",
|
75 |
+
"output_label": "Predicciones"
|
76 |
+
},
|
77 |
+
"Italian (it)": {
|
78 |
+
"model_path": "KRLabsOrg/lettucedect-210m-eurobert-it-v1",
|
79 |
+
"lang": "it",
|
80 |
+
"context": "La Francia è un paese in Europa. La capitale della Francia è Parigi. La popolazione della Francia è di 67 milioni.",
|
81 |
+
"question": "Qual è la capitale della Francia? Qual è la popolazione della Francia?",
|
82 |
+
"answer": "La capitale della Francia è Parigi. La popolazione della Francia è di 69 milioni.",
|
83 |
+
"output_label": "Previsioni"
|
84 |
+
},
|
85 |
+
"Polish (pl)": {
|
86 |
+
"model_path": "KRLabsOrg/lettucedect-210m-eurobert-pl-v1",
|
87 |
+
"lang": "pl",
|
88 |
+
"context": "Kopernikanizm to teoria astronomiczna opracowana przez Mikołaja Kopernika, zgodnie z którą Słońce znajduje się w centrum Układu Słonecznego, a Ziemia i inne planety krążą wokół niego. Teoria ta została opublikowana w dziele 'O obrotach sfer niebieskich' w 1543 roku.",
|
89 |
+
"question": "Na czym polega teoria kopernikańska i kiedy została opublikowana?",
|
90 |
+
"answer": "Teoria kopernikańska zakłada, że Ziemia jest jednym z wielu ciał niebieskich krążących wokół Słońca. Kopernik opracował również zaawansowane równania matematyczne opisujące ruch satelitów, które zostały wykorzystane w XX wieku w programie kosmicznym NASA. Teoria została opublikowana w 1543 roku.",
|
91 |
+
"output_label": "Przewidywania"
|
92 |
+
},
|
93 |
+
"Chinese (cn)": {
|
94 |
+
"model_path": "KRLabsOrg/lettucedect-210m-eurobert-cn-v1",
|
95 |
+
"lang": "cn",
|
96 |
+
"context": "长城是中国古代的伟大防御工程,全长超过21,000公里。它的建造始于公元前7世纪,历经多个朝代。",
|
97 |
+
"question": "长城有多长?它是什么时候建造的?",
|
98 |
+
"answer": "长城全长约50,000公里。它的建造始于公元前3世纪,仅在秦朝时期。",
|
99 |
+
"output_label": "预测"
|
100 |
+
},
|
101 |
+
"LLM-Based": {
|
102 |
+
"method": "llm",
|
103 |
+
"lang": "en",
|
104 |
+
"context": "France is a country in Europe. The capital of France is Paris. The population of France is 67 million.",
|
105 |
+
"question": "What is the capital of France? What is the population of France?",
|
106 |
+
"answer": "The capital of France is Paris. The population of France is 69 million.",
|
107 |
+
"output_label": "LLM Predictions"
|
108 |
+
}
|
109 |
+
}
|
110 |
+
|
111 |
+
|
112 |
+
def main():
|
113 |
+
st.set_page_config(page_title="Lettuce Detective", page_icon="🥬", layout="wide")
|
114 |
+
|
115 |
+
st.image(
|
116 |
+
"https://github.com/KRLabsOrg/LettuceDetect/blob/main/assets/lettuce_detective.png?raw=true",
|
117 |
+
width=600,
|
118 |
+
)
|
119 |
+
|
120 |
+
st.title("LettuceDetect Multilingual Demo 🌍")
|
121 |
+
st.markdown("### Detect hallucinations in 7 languages")
|
122 |
+
|
123 |
+
# Create a sidebar for language selection and model options
|
124 |
+
with st.sidebar:
|
125 |
+
st.header("Settings")
|
126 |
+
selected_language = st.selectbox(
|
127 |
+
"Select Language",
|
128 |
+
list(LANGUAGE_EXAMPLES.keys())
|
129 |
+
)
|
130 |
+
|
131 |
+
example = LANGUAGE_EXAMPLES[selected_language]
|
132 |
+
|
133 |
+
# Only show model size option for transformer-based models
|
134 |
+
model_method = example.get("method", "transformer")
|
135 |
+
|
136 |
+
if model_method == "transformer":
|
137 |
+
model_size = st.radio(
|
138 |
+
"Model Size",
|
139 |
+
["Base (210M)", "Large (610M)"],
|
140 |
+
index=0,
|
141 |
+
help="Base models are faster, large models are more accurate."
|
142 |
+
)
|
143 |
+
|
144 |
+
# API key not needed for transformer models
|
145 |
+
openai_api_key = None
|
146 |
+
else:
|
147 |
+
# For LLM-based method
|
148 |
+
st.info("LLM-based detection requires an OpenAI API key")
|
149 |
+
openai_api_key = st.text_input("OpenAI API Key", type="password")
|
150 |
+
|
151 |
+
st.markdown("---")
|
152 |
+
st.markdown("### About")
|
153 |
+
st.markdown(
|
154 |
+
"LettuceDetect identifies hallucinations by comparing answers to provided context. "
|
155 |
+
"Highlighted text indicates content not supported by the source material."
|
156 |
+
)
|
157 |
+
st.markdown("[GitHub](https://github.com/KRLabsOrg/LettuceDetect) | [HuggingFace](https://huggingface.co/collections/KRLabsOrg/multilingual-hallucination-detection-682a2549c18ecd32689231ce)")
|
158 |
+
|
159 |
+
# Get the example data for the selected language
|
160 |
+
example = LANGUAGE_EXAMPLES[selected_language]
|
161 |
+
|
162 |
+
# Adjust model path based on selected size if needed
|
163 |
+
if model_method == "transformer":
|
164 |
+
model_path = example["model_path"]
|
165 |
+
if "base" not in model_path.lower() and "large" not in model_path.lower():
|
166 |
+
# Only adjust if it's a numerical size model that can be switched
|
167 |
+
if "210m" in model_path.lower() and "Large" in model_size:
|
168 |
+
model_path = model_path.replace("210m", "610m")
|
169 |
+
elif "610m" in model_path.lower() and "Base" in model_size:
|
170 |
+
model_path = model_path.replace("610m", "210m")
|
171 |
+
else:
|
172 |
+
# For LLM-based method, no model path needed
|
173 |
+
model_path = None
|
174 |
+
|
175 |
+
@st.cache_resource
|
176 |
+
def load_detector(method, model_path=None, lang=None, api_key=None):
|
177 |
+
try:
|
178 |
+
import os
|
179 |
+
if api_key:
|
180 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
181 |
+
|
182 |
+
if method == "transformer":
|
183 |
+
return HallucinationDetector(
|
184 |
+
method=method,
|
185 |
+
model_path=model_path,
|
186 |
+
lang=lang,
|
187 |
+
trust_remote_code=True
|
188 |
+
)
|
189 |
+
else:
|
190 |
+
# LLM-based method
|
191 |
+
return HallucinationDetector(method=method)
|
192 |
+
except Exception as e:
|
193 |
+
st.error(f"Error loading model: {e}")
|
194 |
+
return None
|
195 |
+
|
196 |
+
# Load detector for the selected language
|
197 |
+
with st.spinner(f"Loading {selected_language} model..."):
|
198 |
+
detector = load_detector(
|
199 |
+
method=model_method,
|
200 |
+
model_path=model_path,
|
201 |
+
lang=example["lang"],
|
202 |
+
api_key=openai_api_key
|
203 |
+
)
|
204 |
+
|
205 |
+
# Create a two-column layout
|
206 |
+
col1, col2 = st.columns(2)
|
207 |
+
|
208 |
+
with col1:
|
209 |
+
st.subheader("Input")
|
210 |
+
context = st.text_area(
|
211 |
+
"Context",
|
212 |
+
example["context"],
|
213 |
+
height=150
|
214 |
+
)
|
215 |
+
|
216 |
+
question = st.text_area(
|
217 |
+
"Question",
|
218 |
+
example["question"],
|
219 |
+
height=80
|
220 |
+
)
|
221 |
+
|
222 |
+
answer = st.text_area(
|
223 |
+
"Answer",
|
224 |
+
example["answer"],
|
225 |
+
height=100
|
226 |
+
)
|
227 |
+
|
228 |
+
with col2:
|
229 |
+
st.subheader("Results")
|
230 |
+
if detector:
|
231 |
+
if st.button("Detect Hallucinations", type="primary"):
|
232 |
+
with st.spinner("Analyzing..."):
|
233 |
+
predictions = detector.predict(
|
234 |
+
context=[context], question=question, answer=answer, output_format="spans"
|
235 |
+
)
|
236 |
+
|
237 |
+
if predictions:
|
238 |
+
st.success(f"Found {len(predictions)} hallucination(s)")
|
239 |
+
st.markdown(f"**{example['output_label']}:**")
|
240 |
+
html_content = create_interactive_text(answer, predictions)
|
241 |
+
components.html(html_content, height=200)
|
242 |
+
|
243 |
+
# Display raw predictions in a collapsible section
|
244 |
+
with st.expander("Raw prediction data"):
|
245 |
+
st.json(predictions)
|
246 |
+
else:
|
247 |
+
st.info("No hallucinations detected")
|
248 |
+
else:
|
249 |
+
st.error("Model not loaded. Please check your internet connection or try a different language.")
|
250 |
+
|
251 |
+
# Show information about current model
|
252 |
+
st.markdown("---")
|
253 |
+
if model_method == "transformer":
|
254 |
+
st.markdown(f"**Current Model:** {model_path}")
|
255 |
+
else:
|
256 |
+
st.markdown("**Method:** LLM-based hallucination detection")
|
257 |
+
st.markdown(f"**Language:** {example['lang']}")
|
258 |
+
|
259 |
+
|
260 |
+
if __name__ == "__main__":
|
261 |
+
main()
|