Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from PIL import Image | |
# Class labels (same order as training) | |
class_names = ['cardboard', 'glass', 'metal', 'paper', 'plastic', 'trash'] | |
# Load your trained model | |
model = tf.keras.models.load_model("garbage_model.h5") | |
# Prediction function | |
def predict_image(img): | |
img = img.resize((124, 124)) | |
img_array = tf.keras.preprocessing.image.img_to_array(img) | |
img_array = tf.expand_dims(img_array, axis=0) | |
predictions = model.predict(img_array)[0] | |
return {class_names[i]: float(predictions[i]) for i in range(len(class_names))} | |
# Gradio interface | |
interface = gr.Interface( | |
fn=predict_image, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(num_top_classes=3), | |
title="ποΈ Garbage Classifier with EfficientNet", | |
description="Upload a garbage image to predict its type: plastic, paper, metal, etc." | |
) | |
interface.launch() | |