JaishnaCodz's picture
Update app.py
f1f1713 verified
raw
history blame contribute delete
920 Bytes
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
# Class labels (same order as training)
class_names = ['cardboard', 'glass', 'metal', 'paper', 'plastic', 'trash']
# Load your trained model
model = tf.keras.models.load_model("garbage_model.h5")
# Prediction function
def predict_image(img):
img = img.resize((124, 124))
img_array = tf.keras.preprocessing.image.img_to_array(img)
img_array = tf.expand_dims(img_array, axis=0)
predictions = model.predict(img_array)[0]
return {class_names[i]: float(predictions[i]) for i in range(len(class_names))}
# Gradio interface
interface = gr.Interface(
fn=predict_image,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=3),
title="πŸ—‘οΈ Garbage Classifier with EfficientNet",
description="Upload a garbage image to predict its type: plastic, paper, metal, etc."
)
interface.launch()