Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Class labels (same order as training)
|
7 |
+
class_names = ['cardboard', 'glass', 'metal', 'paper', 'plastic', 'trash']
|
8 |
+
|
9 |
+
# Load your trained model
|
10 |
+
model = tf.keras.models.load_model("garbage_model.h5")
|
11 |
+
|
12 |
+
# Prediction function
|
13 |
+
def predict_image(img):
|
14 |
+
img = img.resize((124, 124))
|
15 |
+
img_array = tf.keras.preprocessing.image.img_to_array(img)
|
16 |
+
img_array = tf.expand_dims(img_array, axis=0)
|
17 |
+
|
18 |
+
predictions = model.predict(img_array)[0]
|
19 |
+
return {class_names[i]: float(predictions[i]) for i in range(len(class_names))}
|
20 |
+
|
21 |
+
# Gradio interface
|
22 |
+
interface = gr.Interface(
|
23 |
+
fn=predict_image,
|
24 |
+
inputs=gr.Image(type="pil"),
|
25 |
+
outputs=gr.Label(num_top_classes=3),
|
26 |
+
title="🗑️ Garbage Classifier with EfficientNet",
|
27 |
+
description="Upload a garbage image to predict its type: plastic, paper, metal, etc."
|
28 |
+
)
|
29 |
+
|
30 |
+
interface.launch()
|
31 |
+
|