Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch | |
import torch.nn as nn | |
import torchaudio | |
from torchaudio.transforms import FrequencyMasking | |
from tja import parse_tja, PyParsingMode | |
from .config import N_TYPES, SAMPLE_RATE, N_MELS, HOP_LENGTH, TIME_SUB | |
from .model import TaikoConformer7 | |
mel_transform = torchaudio.transforms.MelSpectrogram( | |
sample_rate=SAMPLE_RATE, | |
n_mels=N_MELS, | |
hop_length=HOP_LENGTH, | |
n_fft=2048, | |
) | |
freq_mask = FrequencyMasking(freq_mask_param=15) | |
def preprocess(example, difficulty="oni"): | |
wav_tensor = example["audio"]["array"] | |
sr = example["audio"]["sampling_rate"] | |
# 1) load & resample | |
if sr != SAMPLE_RATE: | |
wav_tensor = torchaudio.functional.resample(wav_tensor, sr, SAMPLE_RATE) | |
# normalize audio | |
wav_tensor = wav_tensor / (wav_tensor.abs().max() + 1e-8) | |
# add random Gaussian noise | |
if torch.rand(1).item() < 0.5: | |
wav_tensor = wav_tensor + 0.005 * torch.randn_like(wav_tensor) | |
# 2) mel: (1, N_MELS, T) | |
mel = mel_transform(wav_tensor).unsqueeze(0) | |
# apply SpecAugment | |
mel = freq_mask(mel) | |
_, _, T = mel.shape | |
# 3) build label sequence of length ceil(T / TIME_SUB) | |
T_sub = math.ceil(T / TIME_SUB) | |
# Initialize energy-based labels for Don, Ka, Drumroll | |
don_labels = torch.zeros(T_sub, dtype=torch.float32) | |
ka_labels = torch.zeros(T_sub, dtype=torch.float32) | |
drumroll_labels = torch.zeros(T_sub, dtype=torch.float32) | |
sliding_nps_labels = torch.zeros( | |
T_sub, dtype=torch.float32 | |
) # New label for sliding NPS | |
# Define exponential decay tail parameters | |
tail_length = 40 # number of frames for decay tail | |
decay_rate = 8.0 # decay rate parameter, adjust as needed | |
tail_kernel = torch.exp( | |
-torch.arange(0, tail_length, dtype=torch.float32) / decay_rate | |
) | |
fps = SAMPLE_RATE / HOP_LENGTH | |
num_valid_notes = 0 | |
for onset in example[difficulty]: | |
typ, t_start, t_end, *_ = onset | |
# Assuming N_TYPES in config is appropriately set (e.g., 7 or more) | |
if typ < 1 or typ > N_TYPES: # Filter out invalid types | |
continue | |
num_valid_notes += 1 | |
exact_frame_start = t_start.item() * fps | |
# Type 1 and 3 are Don, Type 2 and 4 are Ka | |
if typ == 1 or typ == 3 or typ == 2 or typ == 4: | |
exact_hit_time_sub = exact_frame_start / TIME_SUB | |
current_labels = don_labels if (typ == 1 or typ == 3) else ka_labels | |
start_points_info = [] | |
rounded_hit_time_sub = round(exact_hit_time_sub) | |
if ( | |
abs(exact_hit_time_sub - rounded_hit_time_sub) < 1e-6 | |
): # Tolerance for float precision | |
idx_single = int(rounded_hit_time_sub) | |
if 0 <= idx_single < T_sub: | |
start_points_info.append({"idx": idx_single, "weight": 1.0}) | |
else: | |
idx_floor = math.floor(exact_hit_time_sub) | |
idx_ceil = idx_floor + 1 | |
frac = exact_hit_time_sub - idx_floor | |
weight_ceil = frac | |
weight_floor = 1.0 - frac | |
if weight_floor > 1e-6 and 0 <= idx_floor < T_sub: | |
start_points_info.append({"idx": idx_floor, "weight": weight_floor}) | |
if weight_ceil > 1e-6 and 0 <= idx_ceil < T_sub: | |
start_points_info.append({"idx": idx_ceil, "weight": weight_ceil}) | |
for point_info in start_points_info: | |
start_idx = point_info["idx"] | |
weight = point_info["weight"] | |
for k_idx, kernel_val in enumerate(tail_kernel): | |
target_idx = start_idx + k_idx | |
if 0 <= target_idx < T_sub: | |
current_labels[target_idx] = max( | |
current_labels[target_idx].item(), | |
weight * kernel_val.item(), | |
) | |
# Type 5, 6, 7 are Drumroll | |
elif typ >= 5 and typ <= 7: | |
exact_frame_end = t_end.item() * fps | |
exact_start_time_sub = exact_frame_start / TIME_SUB | |
exact_end_time_sub = exact_frame_end / TIME_SUB | |
# Improved drumroll body | |
body_loop_start_idx = math.floor(exact_start_time_sub) | |
body_loop_end_idx = math.ceil(exact_end_time_sub) | |
for dr_idx in range(body_loop_start_idx, body_loop_end_idx): | |
if 0 <= dr_idx < T_sub: | |
drumroll_labels[dr_idx] = 1.0 | |
# Improved drumroll tail (starts from exact_end_time_sub) | |
tail_start_points_info = [] | |
rounded_end_time_sub = round(exact_end_time_sub) | |
if abs(exact_end_time_sub - rounded_end_time_sub) < 1e-6: | |
idx_single_tail = int(rounded_end_time_sub) | |
if 0 <= idx_single_tail < T_sub: | |
tail_start_points_info.append( | |
{"idx": idx_single_tail, "weight": 1.0} | |
) | |
else: | |
idx_floor_tail = math.floor(exact_end_time_sub) | |
idx_ceil_tail = idx_floor_tail + 1 | |
frac_tail = exact_end_time_sub - idx_floor_tail | |
weight_ceil_tail = frac_tail | |
weight_floor_tail = 1.0 - frac_tail | |
if weight_floor_tail > 1e-6 and 0 <= idx_floor_tail < T_sub: | |
tail_start_points_info.append( | |
{"idx": idx_floor_tail, "weight": weight_floor_tail} | |
) | |
if weight_ceil_tail > 1e-6 and 0 <= idx_ceil_tail < T_sub: | |
tail_start_points_info.append( | |
{"idx": idx_ceil_tail, "weight": weight_ceil_tail} | |
) | |
for point_info in tail_start_points_info: | |
start_idx = point_info["idx"] | |
weight = point_info["weight"] | |
for k_idx, kernel_val in enumerate(tail_kernel): | |
target_idx = start_idx + k_idx | |
if 0 <= target_idx < T_sub: | |
drumroll_labels[target_idx] = max( | |
drumroll_labels[target_idx].item(), | |
weight * kernel_val.item(), | |
) | |
# Calculate sliding window NPS | |
note_events = ( | |
[] | |
) # Store tuples of (time_sec, type_is_drumroll_start_or_end, duration_if_drumroll) | |
for onset in example[difficulty]: | |
typ, t_start_tensor, t_end_tensor, *_ = onset | |
t_start = t_start_tensor.item() | |
t_end = t_end_tensor.item() | |
if typ in [1, 2, 3, 4]: # Don or Ka | |
note_events.append( | |
(t_start, False, 0) | |
) # False indicates not a drumroll event, duration 0 | |
elif typ >= 5 and typ <= 7: # Drumroll | |
note_events.append( | |
(t_start, True, t_end - t_start) | |
) # True indicates drumroll start, store duration | |
# We don't explicitly need a drumroll end event for this calculation method | |
note_events.sort(key=lambda x: x[0]) # Sort by time | |
window_duration_seconds = 0.5 | |
# drumroll_nps_rate = 10.0 # Removed: Will use adaptive rate | |
# Step 1: Calculate base_sliding_nps_labels (Don/Ka only) | |
base_don_ka_sliding_nps = torch.zeros(T_sub, dtype=torch.float32) | |
time_step_duration_sec = TIME_SUB / fps # Duration of one T_sub segment | |
for k_idx in range(T_sub): | |
k_window_end_sec = ((k_idx + 1) * TIME_SUB) / fps | |
k_window_start_sec = k_window_end_sec - window_duration_seconds | |
current_don_ka_count = 0.0 | |
for event_t, is_drumroll, _ in note_events: | |
if not is_drumroll: # Don or Ka hit | |
if k_window_start_sec <= event_t < k_window_end_sec: | |
current_don_ka_count += 1 | |
base_don_ka_sliding_nps[k_idx] = current_don_ka_count / window_duration_seconds | |
# Step 2: Calculate adaptive_drumroll_rates_for_all_events | |
adaptive_drumroll_rates_for_all_events = [] | |
for event_t, is_drumroll, drumroll_dur in note_events: | |
if is_drumroll: | |
drumroll_start_sec = event_t | |
drumroll_end_sec = event_t + drumroll_dur | |
slice_start_idx = math.floor(drumroll_start_sec / time_step_duration_sec) | |
slice_end_idx = math.ceil(drumroll_end_sec / time_step_duration_sec) | |
slice_start_idx = max(0, slice_start_idx) | |
slice_end_idx = min(T_sub, slice_end_idx) | |
max_nps_in_drumroll_period = 0.0 | |
if slice_start_idx < slice_end_idx: | |
relevant_base_nps_values = base_don_ka_sliding_nps[ | |
slice_start_idx:slice_end_idx | |
] | |
if relevant_base_nps_values.numel() > 0: | |
max_nps_in_drumroll_period = torch.max( | |
relevant_base_nps_values | |
).item() | |
rate = max(5.0, max_nps_in_drumroll_period) | |
adaptive_drumroll_rates_for_all_events.append(rate) | |
else: | |
adaptive_drumroll_rates_for_all_events.append(0.0) # Placeholder | |
# Step 3: Calculate final sliding_nps_labels using adaptive rates | |
# sliding_nps_labels is already initialized with zeros earlier in the function. | |
for k_idx in range(T_sub): | |
k_window_end_sec = ((k_idx + 1) * TIME_SUB) / fps | |
k_window_start_sec = k_window_end_sec - window_duration_seconds | |
current_window_total_nps_contribution = 0.0 | |
for event_idx, (event_t, is_drumroll, drumroll_dur) in enumerate(note_events): | |
if is_drumroll: | |
drumroll_start_sec = event_t | |
drumroll_end_sec = event_t + drumroll_dur | |
overlap_start = max(k_window_start_sec, drumroll_start_sec) | |
overlap_end = min(k_window_end_sec, drumroll_end_sec) | |
if overlap_end > overlap_start: | |
overlap_duration = overlap_end - overlap_start | |
current_adaptive_rate = adaptive_drumroll_rates_for_all_events[ | |
event_idx | |
] | |
current_window_total_nps_contribution += ( | |
overlap_duration * current_adaptive_rate | |
) | |
else: # Don or Ka hit | |
if k_window_start_sec <= event_t < k_window_end_sec: | |
current_window_total_nps_contribution += ( | |
1 # Each hit contributes 1 to the count | |
) | |
sliding_nps_labels[k_idx] = ( | |
current_window_total_nps_contribution / window_duration_seconds | |
) | |
# Normalize sliding_nps_labels to 0-1 range | |
if T_sub > 0: # Ensure there are elements to normalize | |
min_nps_val = torch.min(sliding_nps_labels) | |
max_nps_val = torch.max(sliding_nps_labels) | |
denominator = max_nps_val - min_nps_val | |
if denominator > 1e-6: # Use a small epsilon for float comparison | |
sliding_nps_labels = (sliding_nps_labels - min_nps_val) / denominator | |
else: | |
# If all values are (nearly) the same | |
if max_nps_val > 1e-6: # If the constant value is positive | |
sliding_nps_labels = torch.ones_like(sliding_nps_labels) | |
else: # If the constant value is zero (or very close to it) | |
sliding_nps_labels = torch.zeros_like(sliding_nps_labels) | |
duration_seconds = wav_tensor.shape[-1] / SAMPLE_RATE | |
nps = num_valid_notes / duration_seconds if duration_seconds > 0 else 0.0 | |
parsed = parse_tja(example["tja"], mode=PyParsingMode.Full) | |
chart = next( | |
(chart for chart in parsed.charts if chart.course.lower() == difficulty), None | |
) | |
difficulty_id = ( | |
0 | |
if difficulty == "easy" | |
else ( | |
1 | |
if difficulty == "normal" | |
else 2 if difficulty == "hard" else 3 if difficulty == "oni" else 4 | |
) # Assuming 4 for edit/ura | |
) | |
level = chart.level if chart else 0 | |
# --- CNN shape inference and label padding/truncation --- | |
# Simulate CNN to get output time length (T_cnn) | |
dummy_model = TaikoConformer7() | |
with torch.no_grad(): | |
cnn_out = dummy_model.cnn(mel.unsqueeze(0)) # (1, C, F, T_cnn) | |
_, _, _, T_cnn = cnn_out.shape | |
# Pad or truncate labels to T_cnn | |
def pad_or_truncate(label, out_len): | |
if label.shape[0] < out_len: | |
pad = torch.zeros(out_len - label.shape[0], dtype=label.dtype) | |
return torch.cat([label, pad], dim=0) | |
else: | |
return label[:out_len] | |
don_labels = pad_or_truncate(don_labels, T_cnn) | |
ka_labels = pad_or_truncate(ka_labels, T_cnn) | |
drumroll_labels = pad_or_truncate(drumroll_labels, T_cnn) | |
sliding_nps_labels = pad_or_truncate(sliding_nps_labels, T_cnn) # Pad new label | |
# For conformer input lengths: this should be T_cnn | |
conformer_sequence_length = T_cnn # This is the actual sequence length after CNN | |
print( | |
f"Processed {num_valid_notes} notes in {duration_seconds:.2f} seconds, NPS: {nps:.2f}, Difficulty: {difficulty_id}, Level: {level}" | |
) | |
return { | |
"mel": mel, # (1, N_MELS, T) | |
"don_labels": don_labels, # (T_cnn,) | |
"ka_labels": ka_labels, # (T_cnn,) | |
"drumroll_labels": drumroll_labels, # (T_cnn,) | |
"sliding_nps_labels": sliding_nps_labels, # Add new label (T_cnn,) | |
"nps": torch.tensor(nps, dtype=torch.float32), | |
"difficulty": torch.tensor(difficulty_id, dtype=torch.long), | |
"level": torch.tensor(level, dtype=torch.long), | |
"duration_seconds": torch.tensor(duration_seconds, dtype=torch.float32), | |
"length": torch.tensor( | |
conformer_sequence_length, dtype=torch.long | |
), # Use T_cnn for conformer and loss masking | |
} | |
def collate_fn(batch): | |
mels_list = [b["mel"].squeeze(0).transpose(0, 1) for b in batch] # (T, N_MELS) | |
don_labels_list = [b["don_labels"] for b in batch] | |
ka_labels_list = [b["ka_labels"] for b in batch] | |
drumroll_labels_list = [b["drumroll_labels"] for b in batch] | |
sliding_nps_labels_list = [b["sliding_nps_labels"] for b in batch] # New label list | |
nps_list = [b["nps"] for b in batch] | |
difficulty_list = [b["difficulty"] for b in batch] | |
level_list = [b["level"] for b in batch] | |
durations_list = [b["duration_seconds"] for b in batch] | |
lengths_list = [b["length"] for b in batch] # These are T_cnn_i for each example | |
# Pad mels | |
padded_mels = nn.utils.rnn.pad_sequence( | |
mels_list, batch_first=True | |
) # (B, T_max_mel, N_MELS) | |
reshaped_mels = padded_mels.transpose(1, 2).unsqueeze(1) | |
# T_max_mel_batch = padded_mels.shape[1] # Max mel length in batch, not used for label padding anymore | |
# Determine max sequence length for labels (max T_cnn in batch) | |
max_label_len = 0 | |
if lengths_list: # handle empty batch case | |
max_label_len = max(l.item() for l in lengths_list) if lengths_list else 0 | |
# Pad labels to max_label_len (max_t_cnn_in_batch) | |
def pad_label_to_max_len(label_tensor, target_len): | |
current_len = label_tensor.shape[0] | |
if current_len < target_len: | |
padding_size = target_len - current_len | |
# Ensure padding is created on the same device as the label_tensor | |
padding = torch.zeros( | |
padding_size, dtype=label_tensor.dtype, device=label_tensor.device | |
) | |
return torch.cat((label_tensor, padding), dim=0) | |
elif ( | |
current_len > target_len | |
): # Should ideally not happen if lengths_list is correct | |
return label_tensor[:target_len] | |
return label_tensor | |
don_labels = torch.stack( | |
[pad_label_to_max_len(l, max_label_len) for l in don_labels_list] | |
) | |
ka_labels = torch.stack( | |
[pad_label_to_max_len(l, max_label_len) for l in ka_labels_list] | |
) | |
drumroll_labels = torch.stack( | |
[pad_label_to_max_len(l, max_label_len) for l in drumroll_labels_list] | |
) | |
sliding_nps_labels = torch.stack( | |
[pad_label_to_max_len(l, max_label_len) for l in sliding_nps_labels_list] | |
) # Pad new labels | |
actual_lengths = torch.tensor([l.item() for l in lengths_list], dtype=torch.long) | |
return { | |
"mel": reshaped_mels, | |
"don_labels": don_labels, | |
"ka_labels": ka_labels, | |
"drumroll_labels": drumroll_labels, | |
"sliding_nps_labels": sliding_nps_labels, # Add new batched labels | |
"lengths": actual_lengths, # for conformer and loss masking (T_cnn_i for each item) | |
"nps": torch.stack(nps_list), | |
"difficulty": torch.stack(difficulty_list), | |
"level": torch.stack(level_list), | |
"durations": torch.stack(durations_list), | |
} | |