Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,796 Bytes
812b01c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import math
import torch
import torch.nn as nn
import torchaudio
from torchaudio.transforms import FrequencyMasking
from tja import parse_tja, PyParsingMode
from .config import N_TYPES, SAMPLE_RATE, N_MELS, HOP_LENGTH, TIME_SUB
from .model import TaikoConformer7
mel_transform = torchaudio.transforms.MelSpectrogram(
sample_rate=SAMPLE_RATE,
n_mels=N_MELS,
hop_length=HOP_LENGTH,
n_fft=2048,
)
freq_mask = FrequencyMasking(freq_mask_param=15)
def preprocess(example, difficulty="oni"):
wav_tensor = example["audio"]["array"]
sr = example["audio"]["sampling_rate"]
# 1) load & resample
if sr != SAMPLE_RATE:
wav_tensor = torchaudio.functional.resample(wav_tensor, sr, SAMPLE_RATE)
# normalize audio
wav_tensor = wav_tensor / (wav_tensor.abs().max() + 1e-8)
# add random Gaussian noise
if torch.rand(1).item() < 0.5:
wav_tensor = wav_tensor + 0.005 * torch.randn_like(wav_tensor)
# 2) mel: (1, N_MELS, T)
mel = mel_transform(wav_tensor).unsqueeze(0)
# apply SpecAugment
mel = freq_mask(mel)
_, _, T = mel.shape
# 3) build label sequence of length ceil(T / TIME_SUB)
T_sub = math.ceil(T / TIME_SUB)
# Initialize energy-based labels for Don, Ka, Drumroll
don_labels = torch.zeros(T_sub, dtype=torch.float32)
ka_labels = torch.zeros(T_sub, dtype=torch.float32)
drumroll_labels = torch.zeros(T_sub, dtype=torch.float32)
sliding_nps_labels = torch.zeros(
T_sub, dtype=torch.float32
) # New label for sliding NPS
# Define exponential decay tail parameters
tail_length = 40 # number of frames for decay tail
decay_rate = 8.0 # decay rate parameter, adjust as needed
tail_kernel = torch.exp(
-torch.arange(0, tail_length, dtype=torch.float32) / decay_rate
)
fps = SAMPLE_RATE / HOP_LENGTH
num_valid_notes = 0
for onset in example[difficulty]:
typ, t_start, t_end, *_ = onset
# Assuming N_TYPES in config is appropriately set (e.g., 7 or more)
if typ < 1 or typ > N_TYPES: # Filter out invalid types
continue
num_valid_notes += 1
exact_frame_start = t_start.item() * fps
# Type 1 and 3 are Don, Type 2 and 4 are Ka
if typ == 1 or typ == 3 or typ == 2 or typ == 4:
exact_hit_time_sub = exact_frame_start / TIME_SUB
current_labels = don_labels if (typ == 1 or typ == 3) else ka_labels
start_points_info = []
rounded_hit_time_sub = round(exact_hit_time_sub)
if (
abs(exact_hit_time_sub - rounded_hit_time_sub) < 1e-6
): # Tolerance for float precision
idx_single = int(rounded_hit_time_sub)
if 0 <= idx_single < T_sub:
start_points_info.append({"idx": idx_single, "weight": 1.0})
else:
idx_floor = math.floor(exact_hit_time_sub)
idx_ceil = idx_floor + 1
frac = exact_hit_time_sub - idx_floor
weight_ceil = frac
weight_floor = 1.0 - frac
if weight_floor > 1e-6 and 0 <= idx_floor < T_sub:
start_points_info.append({"idx": idx_floor, "weight": weight_floor})
if weight_ceil > 1e-6 and 0 <= idx_ceil < T_sub:
start_points_info.append({"idx": idx_ceil, "weight": weight_ceil})
for point_info in start_points_info:
start_idx = point_info["idx"]
weight = point_info["weight"]
for k_idx, kernel_val in enumerate(tail_kernel):
target_idx = start_idx + k_idx
if 0 <= target_idx < T_sub:
current_labels[target_idx] = max(
current_labels[target_idx].item(),
weight * kernel_val.item(),
)
# Type 5, 6, 7 are Drumroll
elif typ >= 5 and typ <= 7:
exact_frame_end = t_end.item() * fps
exact_start_time_sub = exact_frame_start / TIME_SUB
exact_end_time_sub = exact_frame_end / TIME_SUB
# Improved drumroll body
body_loop_start_idx = math.floor(exact_start_time_sub)
body_loop_end_idx = math.ceil(exact_end_time_sub)
for dr_idx in range(body_loop_start_idx, body_loop_end_idx):
if 0 <= dr_idx < T_sub:
drumroll_labels[dr_idx] = 1.0
# Improved drumroll tail (starts from exact_end_time_sub)
tail_start_points_info = []
rounded_end_time_sub = round(exact_end_time_sub)
if abs(exact_end_time_sub - rounded_end_time_sub) < 1e-6:
idx_single_tail = int(rounded_end_time_sub)
if 0 <= idx_single_tail < T_sub:
tail_start_points_info.append(
{"idx": idx_single_tail, "weight": 1.0}
)
else:
idx_floor_tail = math.floor(exact_end_time_sub)
idx_ceil_tail = idx_floor_tail + 1
frac_tail = exact_end_time_sub - idx_floor_tail
weight_ceil_tail = frac_tail
weight_floor_tail = 1.0 - frac_tail
if weight_floor_tail > 1e-6 and 0 <= idx_floor_tail < T_sub:
tail_start_points_info.append(
{"idx": idx_floor_tail, "weight": weight_floor_tail}
)
if weight_ceil_tail > 1e-6 and 0 <= idx_ceil_tail < T_sub:
tail_start_points_info.append(
{"idx": idx_ceil_tail, "weight": weight_ceil_tail}
)
for point_info in tail_start_points_info:
start_idx = point_info["idx"]
weight = point_info["weight"]
for k_idx, kernel_val in enumerate(tail_kernel):
target_idx = start_idx + k_idx
if 0 <= target_idx < T_sub:
drumroll_labels[target_idx] = max(
drumroll_labels[target_idx].item(),
weight * kernel_val.item(),
)
# Calculate sliding window NPS
note_events = (
[]
) # Store tuples of (time_sec, type_is_drumroll_start_or_end, duration_if_drumroll)
for onset in example[difficulty]:
typ, t_start_tensor, t_end_tensor, *_ = onset
t_start = t_start_tensor.item()
t_end = t_end_tensor.item()
if typ in [1, 2, 3, 4]: # Don or Ka
note_events.append(
(t_start, False, 0)
) # False indicates not a drumroll event, duration 0
elif typ >= 5 and typ <= 7: # Drumroll
note_events.append(
(t_start, True, t_end - t_start)
) # True indicates drumroll start, store duration
# We don't explicitly need a drumroll end event for this calculation method
note_events.sort(key=lambda x: x[0]) # Sort by time
window_duration_seconds = 0.5
# drumroll_nps_rate = 10.0 # Removed: Will use adaptive rate
# Step 1: Calculate base_sliding_nps_labels (Don/Ka only)
base_don_ka_sliding_nps = torch.zeros(T_sub, dtype=torch.float32)
time_step_duration_sec = TIME_SUB / fps # Duration of one T_sub segment
for k_idx in range(T_sub):
k_window_end_sec = ((k_idx + 1) * TIME_SUB) / fps
k_window_start_sec = k_window_end_sec - window_duration_seconds
current_don_ka_count = 0.0
for event_t, is_drumroll, _ in note_events:
if not is_drumroll: # Don or Ka hit
if k_window_start_sec <= event_t < k_window_end_sec:
current_don_ka_count += 1
base_don_ka_sliding_nps[k_idx] = current_don_ka_count / window_duration_seconds
# Step 2: Calculate adaptive_drumroll_rates_for_all_events
adaptive_drumroll_rates_for_all_events = []
for event_t, is_drumroll, drumroll_dur in note_events:
if is_drumroll:
drumroll_start_sec = event_t
drumroll_end_sec = event_t + drumroll_dur
slice_start_idx = math.floor(drumroll_start_sec / time_step_duration_sec)
slice_end_idx = math.ceil(drumroll_end_sec / time_step_duration_sec)
slice_start_idx = max(0, slice_start_idx)
slice_end_idx = min(T_sub, slice_end_idx)
max_nps_in_drumroll_period = 0.0
if slice_start_idx < slice_end_idx:
relevant_base_nps_values = base_don_ka_sliding_nps[
slice_start_idx:slice_end_idx
]
if relevant_base_nps_values.numel() > 0:
max_nps_in_drumroll_period = torch.max(
relevant_base_nps_values
).item()
rate = max(5.0, max_nps_in_drumroll_period)
adaptive_drumroll_rates_for_all_events.append(rate)
else:
adaptive_drumroll_rates_for_all_events.append(0.0) # Placeholder
# Step 3: Calculate final sliding_nps_labels using adaptive rates
# sliding_nps_labels is already initialized with zeros earlier in the function.
for k_idx in range(T_sub):
k_window_end_sec = ((k_idx + 1) * TIME_SUB) / fps
k_window_start_sec = k_window_end_sec - window_duration_seconds
current_window_total_nps_contribution = 0.0
for event_idx, (event_t, is_drumroll, drumroll_dur) in enumerate(note_events):
if is_drumroll:
drumroll_start_sec = event_t
drumroll_end_sec = event_t + drumroll_dur
overlap_start = max(k_window_start_sec, drumroll_start_sec)
overlap_end = min(k_window_end_sec, drumroll_end_sec)
if overlap_end > overlap_start:
overlap_duration = overlap_end - overlap_start
current_adaptive_rate = adaptive_drumroll_rates_for_all_events[
event_idx
]
current_window_total_nps_contribution += (
overlap_duration * current_adaptive_rate
)
else: # Don or Ka hit
if k_window_start_sec <= event_t < k_window_end_sec:
current_window_total_nps_contribution += (
1 # Each hit contributes 1 to the count
)
sliding_nps_labels[k_idx] = (
current_window_total_nps_contribution / window_duration_seconds
)
# Normalize sliding_nps_labels to 0-1 range
if T_sub > 0: # Ensure there are elements to normalize
min_nps_val = torch.min(sliding_nps_labels)
max_nps_val = torch.max(sliding_nps_labels)
denominator = max_nps_val - min_nps_val
if denominator > 1e-6: # Use a small epsilon for float comparison
sliding_nps_labels = (sliding_nps_labels - min_nps_val) / denominator
else:
# If all values are (nearly) the same
if max_nps_val > 1e-6: # If the constant value is positive
sliding_nps_labels = torch.ones_like(sliding_nps_labels)
else: # If the constant value is zero (or very close to it)
sliding_nps_labels = torch.zeros_like(sliding_nps_labels)
duration_seconds = wav_tensor.shape[-1] / SAMPLE_RATE
nps = num_valid_notes / duration_seconds if duration_seconds > 0 else 0.0
parsed = parse_tja(example["tja"], mode=PyParsingMode.Full)
chart = next(
(chart for chart in parsed.charts if chart.course.lower() == difficulty), None
)
difficulty_id = (
0
if difficulty == "easy"
else (
1
if difficulty == "normal"
else 2 if difficulty == "hard" else 3 if difficulty == "oni" else 4
) # Assuming 4 for edit/ura
)
level = chart.level if chart else 0
# --- CNN shape inference and label padding/truncation ---
# Simulate CNN to get output time length (T_cnn)
dummy_model = TaikoConformer7()
with torch.no_grad():
cnn_out = dummy_model.cnn(mel.unsqueeze(0)) # (1, C, F, T_cnn)
_, _, _, T_cnn = cnn_out.shape
# Pad or truncate labels to T_cnn
def pad_or_truncate(label, out_len):
if label.shape[0] < out_len:
pad = torch.zeros(out_len - label.shape[0], dtype=label.dtype)
return torch.cat([label, pad], dim=0)
else:
return label[:out_len]
don_labels = pad_or_truncate(don_labels, T_cnn)
ka_labels = pad_or_truncate(ka_labels, T_cnn)
drumroll_labels = pad_or_truncate(drumroll_labels, T_cnn)
sliding_nps_labels = pad_or_truncate(sliding_nps_labels, T_cnn) # Pad new label
# For conformer input lengths: this should be T_cnn
conformer_sequence_length = T_cnn # This is the actual sequence length after CNN
print(
f"Processed {num_valid_notes} notes in {duration_seconds:.2f} seconds, NPS: {nps:.2f}, Difficulty: {difficulty_id}, Level: {level}"
)
return {
"mel": mel, # (1, N_MELS, T)
"don_labels": don_labels, # (T_cnn,)
"ka_labels": ka_labels, # (T_cnn,)
"drumroll_labels": drumroll_labels, # (T_cnn,)
"sliding_nps_labels": sliding_nps_labels, # Add new label (T_cnn,)
"nps": torch.tensor(nps, dtype=torch.float32),
"difficulty": torch.tensor(difficulty_id, dtype=torch.long),
"level": torch.tensor(level, dtype=torch.long),
"duration_seconds": torch.tensor(duration_seconds, dtype=torch.float32),
"length": torch.tensor(
conformer_sequence_length, dtype=torch.long
), # Use T_cnn for conformer and loss masking
}
def collate_fn(batch):
mels_list = [b["mel"].squeeze(0).transpose(0, 1) for b in batch] # (T, N_MELS)
don_labels_list = [b["don_labels"] for b in batch]
ka_labels_list = [b["ka_labels"] for b in batch]
drumroll_labels_list = [b["drumroll_labels"] for b in batch]
sliding_nps_labels_list = [b["sliding_nps_labels"] for b in batch] # New label list
nps_list = [b["nps"] for b in batch]
difficulty_list = [b["difficulty"] for b in batch]
level_list = [b["level"] for b in batch]
durations_list = [b["duration_seconds"] for b in batch]
lengths_list = [b["length"] for b in batch] # These are T_cnn_i for each example
# Pad mels
padded_mels = nn.utils.rnn.pad_sequence(
mels_list, batch_first=True
) # (B, T_max_mel, N_MELS)
reshaped_mels = padded_mels.transpose(1, 2).unsqueeze(1)
# T_max_mel_batch = padded_mels.shape[1] # Max mel length in batch, not used for label padding anymore
# Determine max sequence length for labels (max T_cnn in batch)
max_label_len = 0
if lengths_list: # handle empty batch case
max_label_len = max(l.item() for l in lengths_list) if lengths_list else 0
# Pad labels to max_label_len (max_t_cnn_in_batch)
def pad_label_to_max_len(label_tensor, target_len):
current_len = label_tensor.shape[0]
if current_len < target_len:
padding_size = target_len - current_len
# Ensure padding is created on the same device as the label_tensor
padding = torch.zeros(
padding_size, dtype=label_tensor.dtype, device=label_tensor.device
)
return torch.cat((label_tensor, padding), dim=0)
elif (
current_len > target_len
): # Should ideally not happen if lengths_list is correct
return label_tensor[:target_len]
return label_tensor
don_labels = torch.stack(
[pad_label_to_max_len(l, max_label_len) for l in don_labels_list]
)
ka_labels = torch.stack(
[pad_label_to_max_len(l, max_label_len) for l in ka_labels_list]
)
drumroll_labels = torch.stack(
[pad_label_to_max_len(l, max_label_len) for l in drumroll_labels_list]
)
sliding_nps_labels = torch.stack(
[pad_label_to_max_len(l, max_label_len) for l in sliding_nps_labels_list]
) # Pad new labels
actual_lengths = torch.tensor([l.item() for l in lengths_list], dtype=torch.long)
return {
"mel": reshaped_mels,
"don_labels": don_labels,
"ka_labels": ka_labels,
"drumroll_labels": drumroll_labels,
"sliding_nps_labels": sliding_nps_labels, # Add new batched labels
"lengths": actual_lengths, # for conformer and loss masking (T_cnn_i for each item)
"nps": torch.stack(nps_list),
"difficulty": torch.stack(difficulty_list),
"level": torch.stack(level_list),
"durations": torch.stack(durations_list),
}
|