tc5-exp / tc6 /infer.py
JacobLinCool's picture
Add offset parameter to TJA writing functions and update inference methods for TC5, TC6, and TC7
db8b2d5
import time
import torch
import torchaudio
import matplotlib.pyplot as plt
import numpy as np
from .config import SAMPLE_RATE, N_MELS, HOP_LENGTH
import torch.profiler
# --- PREPROCESSING (match training) ---
def preprocess_audio(audio_path):
wav, sr = torchaudio.load(audio_path)
wav = wav.mean(dim=0) # mono
if sr != SAMPLE_RATE:
wav = torchaudio.functional.resample(wav, sr, SAMPLE_RATE)
wav = wav / (wav.abs().max() + 1e-8) # Normalize audio
mel_transform = torchaudio.transforms.MelSpectrogram(
sample_rate=SAMPLE_RATE,
n_mels=N_MELS,
hop_length=HOP_LENGTH,
n_fft=2048,
)
mel = mel_transform(wav)
return mel # mel is (N_MELS, T_mel)
# --- INFERENCE ---
def run_inference(model, mel_input, nps_input, difficulty_input, level_input, device):
model.eval()
with torch.no_grad():
mel = mel_input.to(device).unsqueeze(0) # (1, N_MELS, T_mel)
nps = nps_input.to(device).unsqueeze(0) # (1,)
difficulty = difficulty_input.to(device).unsqueeze(0) # (1,)
level = level_input.to(device).unsqueeze(0) # (1,)
mel_cnn_input = mel.unsqueeze(1) # (1, 1, N_MELS, T_mel)
conformer_lengths = torch.tensor(
[mel_cnn_input.shape[-1]], dtype=torch.long, device=device
)
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
*(
[torch.profiler.ProfilerActivity.CUDA]
if device.type == "cuda"
else []
),
],
record_shapes=True,
profile_memory=True,
with_stack=False,
with_flops=True,
) as prof:
out_dict = model(mel_cnn_input, conformer_lengths, nps, difficulty, level)
print(
prof.key_averages().table(
sort_by=(
"self_cuda_memory_usage"
if device.type == "cuda"
else "self_cpu_time_total"
),
row_limit=20,
)
)
energies = out_dict["presence"].squeeze(0).cpu().numpy()
don_energy = energies[:, 0]
ka_energy = energies[:, 1]
drumroll_energy = energies[:, 2]
return don_energy, ka_energy, drumroll_energy
# --- DECODE TO ONSETS ---
def decode_onsets(
don_energy,
ka_energy,
drumroll_energy,
hop_sec,
threshold=0.5,
min_distance_frames=3,
):
results = []
T_out = len(don_energy)
last_onset_frame = -min_distance_frames
for i in range(1, T_out - 1): # Iterate considering neighbors for peak detection
if i < last_onset_frame + min_distance_frames:
continue
e_don, e_ka, e_drum = don_energy[i], ka_energy[i], drumroll_energy[i]
energies_at_i = {
1: e_don,
2: e_ka,
5: e_drum,
} # Type mapping: 1:Don, 2:Ka, 5:Drumroll
# Find which energy is max and if it's a peak above threshold
# Sort by energy value descending to prioritize higher energy in case of ties for peak condition
sorted_types_by_energy = sorted(
energies_at_i.keys(), key=lambda x: energies_at_i[x], reverse=True
)
detected_this_frame = False
for onset_type in sorted_types_by_energy:
current_energy_series = None
if onset_type == 1:
current_energy_series = don_energy
elif onset_type == 2:
current_energy_series = ka_energy
elif onset_type == 5:
current_energy_series = drumroll_energy
energy_val = current_energy_series[i]
if (
energy_val > threshold
and energy_val > current_energy_series[i - 1]
and energy_val > current_energy_series[i + 1]
):
# Check if this energy is the highest among the three at this frame
# This check is implicitly handled by iterating `sorted_types_by_energy`
# and breaking after the first detection.
results.append((i * hop_sec, onset_type))
last_onset_frame = i
detected_this_frame = True
break # Only one onset type per frame
return results
# --- VISUALIZATION ---
def plot_results(
mel_spectrogram,
don_energy,
ka_energy,
drumroll_energy,
onsets,
hop_sec,
out_path=None,
):
# mel_spectrogram is (N_MELS, T_mel)
T_mel = mel_spectrogram.shape[1]
T_out = len(don_energy) # Length of energy arrays (model output time dimension)
# Time axes
time_axis_mel = np.arange(T_mel) * (HOP_LENGTH / SAMPLE_RATE)
# hop_sec for model output is (HOP_LENGTH * TIME_SUB) / SAMPLE_RATE
# However, the model output T_out is related to T_mel (input to CNN).
# If CNN does not change time dimension, T_out = T_mel.
# If TIME_SUB is used for label generation, T_out = T_mel / TIME_SUB.
# The `lengths` passed to conformer in `run_inference` is T_mel.
# The output of conformer `x` has shape (B, T, D_MODEL). This T is `lengths`.
# So, T_out from model is T_mel.
# The `hop_sec` for onsets should be based on the model output frame rate.
# If model output T_out corresponds to T_mel, then hop_sec for plotting energies is HOP_LENGTH / SAMPLE_RATE.
# The `hop_sec` passed to `decode_onsets` is (HOP_LENGTH * TIME_SUB) / SAMPLE_RATE.
# This seems inconsistent. Let's clarify: `TIME_SUB` is used in `preprocess.py` to determine `T_sub` for labels.
# The model's CNN output time dimension T_cnn is used to pad/truncate labels in `collate_fn`.
# In `model.py`, the CNN does not stride in time. So T_cnn_out = T_mel_input_to_CNN.
# The `lengths` for the conformer is based on this T_cnn_out.
# So, the output of the regressor `presence` (B, T_cnn_out, 3) has T_cnn_out time steps.
# Each step corresponds to `HOP_LENGTH / SAMPLE_RATE` seconds if TIME_SUB is not involved in downsampling features for the conformer.
# Let's assume the `hop_sec` used for `decode_onsets` is correct for interpreting model output frames.
time_axis_energies = np.arange(T_out) * hop_sec
fig, ax1 = plt.subplots(figsize=(100, 10))
# Plot Mel Spectrogram on ax1
mel_db = torchaudio.functional.amplitude_to_DB(
mel_spectrogram, multiplier=10.0, amin=1e-10, db_multiplier=0.0
)
img = ax1.imshow(
mel_db.numpy(),
aspect="auto",
origin="lower",
cmap="magma",
extent=[time_axis_mel[0], time_axis_mel[-1], 0, N_MELS],
)
ax1.set_title("Mel Spectrogram with Predicted Energies and Onsets")
ax1.set_xlabel("Time (s)")
ax1.set_ylabel("Mel Bin")
fig.colorbar(img, ax=ax1, format="%+2.0f dB")
# Create a second y-axis for energies
ax2 = ax1.twinx()
ax2.plot(time_axis_energies, don_energy, label="Don Energy", color="red")
ax2.plot(time_axis_energies, ka_energy, label="Ka Energy", color="blue")
ax2.plot(
time_axis_energies, drumroll_energy, label="Drumroll Energy", color="green"
)
ax2.set_ylabel("Energy")
ax2.set_ylim(0, 1.2) # Assuming energies are somewhat normalized or bounded
# Overlay onsets from decode_onsets (t is already in seconds)
labeled_types = set()
# Group drumrolls into segments (reuse logic from write_tja)
drumroll_times = [t_sec for t_sec, typ in onsets if typ == 5]
drumroll_times.sort()
drumroll_segments = []
if drumroll_times:
seg_start = drumroll_times[0]
prev = drumroll_times[0]
for t in drumroll_times[1:]:
if t - prev <= hop_sec * 6: # up to 5-frame gap
prev = t
else:
drumroll_segments.append((seg_start, prev))
seg_start = t
prev = t
drumroll_segments.append((seg_start, prev))
# Plot Don/Ka onsets as vertical lines
for t_sec, typ in onsets:
if typ == 5:
continue # skip drumroll onsets
color_map = {1: "darkred", 2: "darkblue"}
label_map = {1: "Don Onset", 2: "Ka Onset"}
line_color = color_map.get(typ, "black")
line_label = label_map.get(typ, f"Type {typ} Onset")
if typ not in labeled_types:
ax1.axvline(
t_sec, color=line_color, linestyle="--", alpha=0.9, label=line_label
)
labeled_types.add(typ)
else:
ax1.axvline(t_sec, color=line_color, linestyle="--", alpha=0.9)
# Plot drumroll segments as shaded regions
for seg_start, seg_end in drumroll_segments:
ax1.axvspan(
seg_start,
seg_end + hop_sec,
color="green",
alpha=0.2,
label="Drumroll Segment" if "drumroll" not in labeled_types else None,
)
labeled_types.add("drumroll")
# Combine legends from both axes
lines, labels = ax1.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax2.legend(lines + lines2, labels + labels2, loc="upper right")
fig.tight_layout()
# Return plot as image buffer or save to file if path provided
if out_path:
plt.savefig(out_path)
print(f"Saved plot to {out_path}")
plt.close(fig)
return out_path
else:
# Return plot as in-memory buffer
return fig
def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav", offset=0):
# TJA types: 0:no note, 1:Don, 2:Ka, 3:BigDon, 4:BigKa, 5:DrumrollStart, 8:DrumrollEnd
# Model output types: 1:Don, 2:Ka, 5:Drumroll (interpreted as start/single)
sec_per_beat = 60 / bpm
beats_per_measure = 4 # Assuming 4/4 time signature
sec_per_measure = sec_per_beat * beats_per_measure
# Step 1: Map onsets to (measure_idx, slot, typ)
slot_events = []
for t, typ in onsets:
measure_idx = int(t // sec_per_measure)
t_in_measure = t % sec_per_measure
slot = int(round(t_in_measure / sec_per_measure * quantize))
if slot >= quantize:
slot = quantize - 1
slot_events.append((measure_idx, slot, typ))
# Step 2: Build measure/slot grid
if slot_events:
max_measure_idx = max(m for m, _, _ in slot_events)
else:
max_measure_idx = -1
measures = {i: [0] * quantize for i in range(max_measure_idx + 1)}
# Step 3: Place Don/Ka, collect drumrolls
drumroll_slots = set()
for m, s, typ in slot_events:
if typ in [1, 2]:
measures[m][s] = typ
elif typ == 5:
drumroll_slots.add((m, s))
# Step 4: Process drumrolls into contiguous regions, mark 5 (start) and 8 (end)
# Flatten all slots to a list of (measure, slot) sorted
drumroll_list = sorted(list(drumroll_slots))
# Group into contiguous regions (allowing a gap of 5 slots)
grouped = []
group = []
for ms in drumroll_list:
if not group:
group = [ms]
else:
last_m, last_s = group[-1]
m, s = ms
# Calculate slot distance, considering measure wrap
slot_dist = None
if m == last_m:
slot_dist = s - last_s
elif m == last_m + 1 and last_s <= quantize - 1:
slot_dist = (quantize - 1 - last_s) + s + 1
else:
slot_dist = None
# Allow gap of up to 5 slots (slot_dist <= 6)
if slot_dist is not None and 1 <= slot_dist <= 6:
group.append(ms)
else:
grouped.append(group)
group = [ms]
if group:
grouped.append(group)
# Mark 5 (start) and 8 (end) for each group
for region in grouped:
if len(region) == 1:
m, s = region[0]
measures[m][s] = 5
# Place 8 in next slot (or next measure if at end)
if s < quantize - 1:
measures[m][s + 1] = 8
elif m < max_measure_idx:
measures[m + 1][0] = 8
else:
m_start, s_start = region[0]
m_end, s_end = region[-1]
measures[m_start][s_start] = 5
measures[m_end][s_end] = 8
# Fill 0 for middle slots (already 0 by default)
# Step 5: Generate TJA content
tja_content = []
tja_content.append(f"TITLE:{audio} (TC6, {time.strftime('%Y-%m-%d %H:%M:%S')})")
tja_content.append(f"BPM:{bpm}")
tja_content.append(f"WAVE:{audio}")
tja_content.append(f"OFFSET:{offset}")
tja_content.append("COURSE:Oni\nLEVEL:9\n")
tja_content.append("#START")
for i in range(max_measure_idx + 1):
notes = measures.get(i, [0] * quantize)
line = "".join(str(n) for n in notes)
tja_content.append(line + ",")
tja_content.append("#END")
tja_string = "\n".join(tja_content)
# If out_path is provided, also write to file
if out_path:
with open(out_path, "w", encoding="utf-8") as f:
f.write(tja_string)
print(f"TJA chart saved to {out_path}")
return tja_string