Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
db8b2d5
1
Parent(s):
812b01c
Add offset parameter to TJA writing functions and update inference methods for TC5, TC6, and TC7
Browse files- app.py +54 -16
- tc5/infer.py +2 -2
- tc6/infer.py +2 -2
- tc7/infer.py +2 -2
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from tc5.config import SAMPLE_RATE, HOP_LENGTH
|
@@ -30,7 +31,7 @@ tc7.eval()
|
|
30 |
synthesizer = Client("ryanlinjui/taiko-music-generator")
|
31 |
|
32 |
|
33 |
-
def infer_tc5(audio, nps, bpm):
|
34 |
audio_path = audio
|
35 |
filename = audio_path.split("/")[-1]
|
36 |
# Preprocess
|
@@ -58,7 +59,7 @@ def infer_tc5(audio, nps, bpm):
|
|
58 |
output_frame_hop_sec,
|
59 |
)
|
60 |
# Generate TJA content
|
61 |
-
tja_content = tc5infer.write_tja(onsets, bpm=bpm, audio=filename)
|
62 |
|
63 |
# wrtie TJA content to a temporary file
|
64 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
|
@@ -70,7 +71,7 @@ def infer_tc5(audio, nps, bpm):
|
|
70 |
param_1=handle_file(audio_path),
|
71 |
param_2="達人譜面 / Master",
|
72 |
param_3=16,
|
73 |
-
param_4=
|
74 |
param_5=5,
|
75 |
param_6=5,
|
76 |
param_7=5,
|
@@ -90,7 +91,7 @@ def infer_tc5(audio, nps, bpm):
|
|
90 |
return oni_audio, plot, tja_content
|
91 |
|
92 |
|
93 |
-
def infer_tc6(audio, nps, bpm, difficulty, level):
|
94 |
audio_path = audio
|
95 |
filename = audio_path.split("/")[-1]
|
96 |
# Preprocess
|
@@ -121,7 +122,7 @@ def infer_tc6(audio, nps, bpm, difficulty, level):
|
|
121 |
output_frame_hop_sec,
|
122 |
)
|
123 |
# Generate TJA content
|
124 |
-
tja_content = tc6infer.write_tja(onsets, bpm=bpm, audio=filename)
|
125 |
|
126 |
# wrtie TJA content to a temporary file
|
127 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
|
@@ -133,7 +134,7 @@ def infer_tc6(audio, nps, bpm, difficulty, level):
|
|
133 |
param_1=handle_file(audio_path),
|
134 |
param_2="達人譜面 / Master",
|
135 |
param_3=16,
|
136 |
-
param_4=
|
137 |
param_5=5,
|
138 |
param_6=5,
|
139 |
param_7=5,
|
@@ -153,7 +154,7 @@ def infer_tc6(audio, nps, bpm, difficulty, level):
|
|
153 |
return oni_audio, plot, tja_content
|
154 |
|
155 |
|
156 |
-
def infer_tc7(audio, nps, bpm, difficulty, level):
|
157 |
audio_path = audio
|
158 |
filename = audio_path.split("/")[-1]
|
159 |
# Preprocess
|
@@ -184,7 +185,7 @@ def infer_tc7(audio, nps, bpm, difficulty, level):
|
|
184 |
output_frame_hop_sec,
|
185 |
)
|
186 |
# Generate TJA content
|
187 |
-
tja_content = tc7infer.write_tja(onsets, bpm=bpm, audio=filename)
|
188 |
|
189 |
# wrtie TJA content to a temporary file
|
190 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
|
@@ -196,7 +197,7 @@ def infer_tc7(audio, nps, bpm, difficulty, level):
|
|
196 |
param_1=handle_file(audio_path),
|
197 |
param_2="達人譜面 / Master",
|
198 |
param_3=16,
|
199 |
-
param_4=
|
200 |
param_5=5,
|
201 |
param_6=5,
|
202 |
param_7=5,
|
@@ -216,17 +217,38 @@ def infer_tc7(audio, nps, bpm, difficulty, level):
|
|
216 |
return oni_audio, plot, tja_content
|
217 |
|
218 |
|
219 |
-
|
|
|
220 |
if model_choice == "TC5":
|
221 |
-
return infer_tc5(audio, nps, bpm)
|
222 |
elif model_choice == "TC6":
|
223 |
-
return infer_tc6(audio, nps, bpm, difficulty, level)
|
224 |
else: # TC7
|
225 |
-
return infer_tc7(audio, nps, bpm, difficulty, level)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
|
228 |
with gr.Blocks() as demo:
|
229 |
-
gr.Markdown("# Taiko Conformer 5/7 Demo")
|
230 |
with gr.Row():
|
231 |
audio_input = gr.Audio(sources="upload", type="filepath", label="Input Audio")
|
232 |
|
@@ -253,6 +275,14 @@ with gr.Blocks() as demo:
|
|
253 |
step=1,
|
254 |
label="BPM (Used by TJA Quantization)",
|
255 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
with gr.Row():
|
258 |
difficulty = gr.Slider(
|
@@ -274,10 +304,18 @@ with gr.Blocks() as demo:
|
|
274 |
info="Difficulty level from 1 to 10",
|
275 |
)
|
276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
audio_output = gr.Audio(label="Generated Audio", type="filepath")
|
278 |
plot_output = gr.Plot(label="Onset/Energy Plot")
|
279 |
tja_output = gr.Textbox(label="TJA File Content", show_copy_button=True)
|
280 |
-
run_btn = gr.Button("Run Inference")
|
281 |
|
282 |
# Update visibility of TC7-specific controls based on model selection
|
283 |
def update_visibility(model_choice):
|
@@ -292,7 +330,7 @@ with gr.Blocks() as demo:
|
|
292 |
|
293 |
run_btn.click(
|
294 |
run_inference,
|
295 |
-
inputs=[audio_input, model_choice, nps, bpm, difficulty, level],
|
296 |
outputs=[audio_output, plot_output, tja_output],
|
297 |
)
|
298 |
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from tc5.config import SAMPLE_RATE, HOP_LENGTH
|
|
|
31 |
synthesizer = Client("ryanlinjui/taiko-music-generator")
|
32 |
|
33 |
|
34 |
+
def infer_tc5(audio, nps, bpm, offset):
|
35 |
audio_path = audio
|
36 |
filename = audio_path.split("/")[-1]
|
37 |
# Preprocess
|
|
|
59 |
output_frame_hop_sec,
|
60 |
)
|
61 |
# Generate TJA content
|
62 |
+
tja_content = tc5infer.write_tja(onsets, bpm=bpm, audio=filename, offset=offset)
|
63 |
|
64 |
# wrtie TJA content to a temporary file
|
65 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
|
|
|
71 |
param_1=handle_file(audio_path),
|
72 |
param_2="達人譜面 / Master",
|
73 |
param_3=16,
|
74 |
+
param_4=7,
|
75 |
param_5=5,
|
76 |
param_6=5,
|
77 |
param_7=5,
|
|
|
91 |
return oni_audio, plot, tja_content
|
92 |
|
93 |
|
94 |
+
def infer_tc6(audio, nps, bpm, offset, difficulty, level):
|
95 |
audio_path = audio
|
96 |
filename = audio_path.split("/")[-1]
|
97 |
# Preprocess
|
|
|
122 |
output_frame_hop_sec,
|
123 |
)
|
124 |
# Generate TJA content
|
125 |
+
tja_content = tc6infer.write_tja(onsets, bpm=bpm, audio=filename, offset=offset)
|
126 |
|
127 |
# wrtie TJA content to a temporary file
|
128 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
|
|
|
134 |
param_1=handle_file(audio_path),
|
135 |
param_2="達人譜面 / Master",
|
136 |
param_3=16,
|
137 |
+
param_4=7,
|
138 |
param_5=5,
|
139 |
param_6=5,
|
140 |
param_7=5,
|
|
|
154 |
return oni_audio, plot, tja_content
|
155 |
|
156 |
|
157 |
+
def infer_tc7(audio, nps, bpm, offset, difficulty, level):
|
158 |
audio_path = audio
|
159 |
filename = audio_path.split("/")[-1]
|
160 |
# Preprocess
|
|
|
185 |
output_frame_hop_sec,
|
186 |
)
|
187 |
# Generate TJA content
|
188 |
+
tja_content = tc7infer.write_tja(onsets, bpm=bpm, audio=filename, offset=offset)
|
189 |
|
190 |
# wrtie TJA content to a temporary file
|
191 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
|
|
|
197 |
param_1=handle_file(audio_path),
|
198 |
param_2="達人譜面 / Master",
|
199 |
param_3=16,
|
200 |
+
param_4=7,
|
201 |
param_5=5,
|
202 |
param_6=5,
|
203 |
param_7=5,
|
|
|
217 |
return oni_audio, plot, tja_content
|
218 |
|
219 |
|
220 |
+
@spaces.GPU
|
221 |
+
def run_inference_gpu(audio, model_choice, nps, bpm, offset, difficulty, level):
|
222 |
if model_choice == "TC5":
|
223 |
+
return infer_tc5(audio, nps, bpm, offset)
|
224 |
elif model_choice == "TC6":
|
225 |
+
return infer_tc6(audio, nps, bpm, offset, difficulty, level)
|
226 |
else: # TC7
|
227 |
+
return infer_tc7(audio, nps, bpm, offset, difficulty, level)
|
228 |
+
|
229 |
+
|
230 |
+
def run_inference_cpu(audio, model_choice, nps, bpm, offset, difficulty, level):
|
231 |
+
if model_choice == "TC5":
|
232 |
+
return infer_tc5(audio, nps, bpm, offset)
|
233 |
+
elif model_choice == "TC6":
|
234 |
+
return infer_tc6(audio, nps, bpm, offset, difficulty, level)
|
235 |
+
else: # TC7
|
236 |
+
return infer_tc7(audio, nps, bpm, offset, difficulty, level)
|
237 |
+
|
238 |
+
|
239 |
+
def run_inference(with_gpu, audio, model_choice, nps, bpm, offset, difficulty, level):
|
240 |
+
if with_gpu:
|
241 |
+
return run_inference_gpu(
|
242 |
+
audio, model_choice, nps, bpm, offset, difficulty, level
|
243 |
+
)
|
244 |
+
else:
|
245 |
+
return run_inference_cpu(
|
246 |
+
audio, model_choice, nps, bpm, offset, difficulty, level
|
247 |
+
)
|
248 |
|
249 |
|
250 |
with gr.Blocks() as demo:
|
251 |
+
gr.Markdown("# Taiko Conformer 5/6/7 Demo")
|
252 |
with gr.Row():
|
253 |
audio_input = gr.Audio(sources="upload", type="filepath", label="Input Audio")
|
254 |
|
|
|
275 |
step=1,
|
276 |
label="BPM (Used by TJA Quantization)",
|
277 |
)
|
278 |
+
offset = gr.Slider(
|
279 |
+
value=0.0,
|
280 |
+
minimum=-5.0,
|
281 |
+
maximum=5.0,
|
282 |
+
step=0.01,
|
283 |
+
label="Offset (in seconds)",
|
284 |
+
info="Adjust the offset for TJA",
|
285 |
+
)
|
286 |
|
287 |
with gr.Row():
|
288 |
difficulty = gr.Slider(
|
|
|
304 |
info="Difficulty level from 1 to 10",
|
305 |
)
|
306 |
|
307 |
+
with gr.Row():
|
308 |
+
with_gpu = gr.Checkbox(
|
309 |
+
value=True,
|
310 |
+
label="Use GPU for Inference",
|
311 |
+
info="Enable this to use GPU for faster inference (if available)",
|
312 |
+
)
|
313 |
+
|
314 |
+
run_btn = gr.Button("Run Inference", variant="primary")
|
315 |
+
|
316 |
audio_output = gr.Audio(label="Generated Audio", type="filepath")
|
317 |
plot_output = gr.Plot(label="Onset/Energy Plot")
|
318 |
tja_output = gr.Textbox(label="TJA File Content", show_copy_button=True)
|
|
|
319 |
|
320 |
# Update visibility of TC7-specific controls based on model selection
|
321 |
def update_visibility(model_choice):
|
|
|
330 |
|
331 |
run_btn.click(
|
332 |
run_inference,
|
333 |
+
inputs=[audio_input, model_choice, nps, bpm, offset, difficulty, level],
|
334 |
outputs=[audio_output, plot_output, tja_output],
|
335 |
)
|
336 |
|
tc5/infer.py
CHANGED
@@ -258,7 +258,7 @@ def plot_results(
|
|
258 |
return fig
|
259 |
|
260 |
|
261 |
-
def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav"):
|
262 |
# TJA types: 0:no note, 1:Don, 2:Ka, 3:BigDon, 4:BigKa, 5:DrumrollStart, 8:DrumrollEnd
|
263 |
# Model output types: 1:Don, 2:Ka, 5:Drumroll (interpreted as start/single)
|
264 |
sec_per_beat = 60 / bpm
|
@@ -336,7 +336,7 @@ def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav"):
|
|
336 |
tja_content.append(f"TITLE:{audio} (TC5, {time.strftime('%Y-%m-%d %H:%M:%S')})")
|
337 |
tja_content.append(f"BPM:{bpm}")
|
338 |
tja_content.append(f"WAVE:{audio}")
|
339 |
-
tja_content.append("OFFSET:
|
340 |
tja_content.append("COURSE:Oni\nLEVEL:9\n")
|
341 |
tja_content.append("#START")
|
342 |
for i in range(max_measure_idx + 1):
|
|
|
258 |
return fig
|
259 |
|
260 |
|
261 |
+
def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav", offset=0):
|
262 |
# TJA types: 0:no note, 1:Don, 2:Ka, 3:BigDon, 4:BigKa, 5:DrumrollStart, 8:DrumrollEnd
|
263 |
# Model output types: 1:Don, 2:Ka, 5:Drumroll (interpreted as start/single)
|
264 |
sec_per_beat = 60 / bpm
|
|
|
336 |
tja_content.append(f"TITLE:{audio} (TC5, {time.strftime('%Y-%m-%d %H:%M:%S')})")
|
337 |
tja_content.append(f"BPM:{bpm}")
|
338 |
tja_content.append(f"WAVE:{audio}")
|
339 |
+
tja_content.append(f"OFFSET:{offset}")
|
340 |
tja_content.append("COURSE:Oni\nLEVEL:9\n")
|
341 |
tja_content.append("#START")
|
342 |
for i in range(max_measure_idx + 1):
|
tc6/infer.py
CHANGED
@@ -257,7 +257,7 @@ def plot_results(
|
|
257 |
return fig
|
258 |
|
259 |
|
260 |
-
def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav"):
|
261 |
# TJA types: 0:no note, 1:Don, 2:Ka, 3:BigDon, 4:BigKa, 5:DrumrollStart, 8:DrumrollEnd
|
262 |
# Model output types: 1:Don, 2:Ka, 5:Drumroll (interpreted as start/single)
|
263 |
sec_per_beat = 60 / bpm
|
@@ -334,7 +334,7 @@ def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav"):
|
|
334 |
tja_content.append(f"TITLE:{audio} (TC6, {time.strftime('%Y-%m-%d %H:%M:%S')})")
|
335 |
tja_content.append(f"BPM:{bpm}")
|
336 |
tja_content.append(f"WAVE:{audio}")
|
337 |
-
tja_content.append("OFFSET:
|
338 |
tja_content.append("COURSE:Oni\nLEVEL:9\n")
|
339 |
tja_content.append("#START")
|
340 |
for i in range(max_measure_idx + 1):
|
|
|
257 |
return fig
|
258 |
|
259 |
|
260 |
+
def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav", offset=0):
|
261 |
# TJA types: 0:no note, 1:Don, 2:Ka, 3:BigDon, 4:BigKa, 5:DrumrollStart, 8:DrumrollEnd
|
262 |
# Model output types: 1:Don, 2:Ka, 5:Drumroll (interpreted as start/single)
|
263 |
sec_per_beat = 60 / bpm
|
|
|
334 |
tja_content.append(f"TITLE:{audio} (TC6, {time.strftime('%Y-%m-%d %H:%M:%S')})")
|
335 |
tja_content.append(f"BPM:{bpm}")
|
336 |
tja_content.append(f"WAVE:{audio}")
|
337 |
+
tja_content.append(f"OFFSET:{offset}")
|
338 |
tja_content.append("COURSE:Oni\nLEVEL:9\n")
|
339 |
tja_content.append("#START")
|
340 |
for i in range(max_measure_idx + 1):
|
tc7/infer.py
CHANGED
@@ -257,7 +257,7 @@ def plot_results(
|
|
257 |
return fig
|
258 |
|
259 |
|
260 |
-
def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav"):
|
261 |
# TJA types: 0:no note, 1:Don, 2:Ka, 3:BigDon, 4:BigKa, 5:DrumrollStart, 8:DrumrollEnd
|
262 |
# Model output types: 1:Don, 2:Ka, 5:Drumroll (interpreted as start/single)
|
263 |
sec_per_beat = 60 / bpm
|
@@ -334,7 +334,7 @@ def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav"):
|
|
334 |
tja_content.append(f"TITLE:{audio} (TC7, {time.strftime('%Y-%m-%d %H:%M:%S')})")
|
335 |
tja_content.append(f"BPM:{bpm}")
|
336 |
tja_content.append(f"WAVE:{audio}")
|
337 |
-
tja_content.append("OFFSET:
|
338 |
tja_content.append("COURSE:Oni\nLEVEL:9\n")
|
339 |
tja_content.append("#START")
|
340 |
for i in range(max_measure_idx + 1):
|
|
|
257 |
return fig
|
258 |
|
259 |
|
260 |
+
def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav", offset=0):
|
261 |
# TJA types: 0:no note, 1:Don, 2:Ka, 3:BigDon, 4:BigKa, 5:DrumrollStart, 8:DrumrollEnd
|
262 |
# Model output types: 1:Don, 2:Ka, 5:Drumroll (interpreted as start/single)
|
263 |
sec_per_beat = 60 / bpm
|
|
|
334 |
tja_content.append(f"TITLE:{audio} (TC7, {time.strftime('%Y-%m-%d %H:%M:%S')})")
|
335 |
tja_content.append(f"BPM:{bpm}")
|
336 |
tja_content.append(f"WAVE:{audio}")
|
337 |
+
tja_content.append(f"OFFSET:{offset}")
|
338 |
tja_content.append("COURSE:Oni\nLEVEL:9\n")
|
339 |
tja_content.append("#START")
|
340 |
for i in range(max_measure_idx + 1):
|