tc5-exp / app.py
JacobLinCool's picture
Fix GPU decorator usage in run_inference_gpu function
2ec713c
import spaces
import gradio as gr
import torch
from tc5.config import SAMPLE_RATE, HOP_LENGTH
from tc5.model import TaikoConformer5
from tc5 import infer as tc5infer
from tc6.model import TaikoConformer6
from tc6 import infer as tc6infer
from tc7.model import TaikoConformer7
from tc7 import infer as tc7infer
from gradio_client import Client, handle_file
import tempfile
GPU_DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model once
tc5 = TaikoConformer5.from_pretrained("JacobLinCool/taiko-conformer-5")
tc5.to(GPU_DEVICE)
tc5.eval()
tc5_cpu = TaikoConformer5.from_pretrained("JacobLinCool/taiko-conformer-5")
tc5_cpu.to("cpu")
tc5_cpu.eval()
# Load TC6 model
tc6 = TaikoConformer6.from_pretrained("JacobLinCool/taiko-conformer-6")
tc6.to(GPU_DEVICE)
tc6.eval()
tc6_cpu = TaikoConformer6.from_pretrained("JacobLinCool/taiko-conformer-6")
tc6_cpu.to("cpu")
tc6_cpu.eval()
# Load TC7 model
tc7 = TaikoConformer7.from_pretrained("JacobLinCool/taiko-conformer-7")
tc7.to(GPU_DEVICE)
tc7.eval()
tc7_cpu = TaikoConformer7.from_pretrained("JacobLinCool/taiko-conformer-7")
tc7_cpu.to("cpu")
tc7_cpu.eval()
synthesizer = Client("ryanlinjui/taiko-music-generator")
def infer_tc5(audio, nps, bpm, offset, DEVICE, MODEL):
audio_path = audio
filename = audio_path.split("/")[-1]
# Preprocess
mel_input, nps_input = tc5infer.preprocess_audio(audio_path, nps)
# Inference
don_energy, ka_energy, drumroll_energy = tc5infer.run_inference(
MODEL, mel_input, nps_input, DEVICE
)
output_frame_hop_sec = HOP_LENGTH / SAMPLE_RATE
onsets = tc5infer.decode_onsets(
don_energy,
ka_energy,
drumroll_energy,
output_frame_hop_sec,
threshold=0.3,
min_distance_frames=3,
)
# Generate plot
plot = tc5infer.plot_results(
mel_input,
don_energy,
ka_energy,
drumroll_energy,
onsets,
output_frame_hop_sec,
)
# Generate TJA content
tja_content = tc5infer.write_tja(onsets, bpm=bpm, audio=filename, offset=offset)
# wrtie TJA content to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
temp_tja_file.write(tja_content.encode("utf-8"))
tja_path = temp_tja_file.name
result = synthesizer.predict(
param_0=handle_file(tja_path),
param_1=handle_file(audio_path),
param_2="達人譜面 / Master",
param_3=16,
param_4=7,
param_5=5,
param_6=5,
param_7=5,
param_8=5,
param_9=5,
param_10=5,
param_11=5,
param_12=5,
param_13=5,
param_14=5,
param_15=5,
api_name="/handle",
)
oni_audio = result[1]
return oni_audio, plot, tja_content
def infer_tc6(audio, nps, bpm, offset, difficulty, level, DEVICE, MODEL):
audio_path = audio
filename = audio_path.split("/")[-1]
# Preprocess
mel_input = tc6infer.preprocess_audio(audio_path)
nps_input = torch.tensor(nps, dtype=torch.float32).to(DEVICE)
difficulty_input = torch.tensor(difficulty, dtype=torch.float32).to(DEVICE)
level_input = torch.tensor(level, dtype=torch.float32).to(DEVICE)
# Inference
don_energy, ka_energy, drumroll_energy = tc6infer.run_inference(
MODEL, mel_input, nps_input, difficulty_input, level_input, DEVICE
)
output_frame_hop_sec = HOP_LENGTH / SAMPLE_RATE
onsets = tc6infer.decode_onsets(
don_energy,
ka_energy,
drumroll_energy,
output_frame_hop_sec,
threshold=0.3,
min_distance_frames=3,
)
# Generate plot
plot = tc6infer.plot_results(
mel_input,
don_energy,
ka_energy,
drumroll_energy,
onsets,
output_frame_hop_sec,
)
# Generate TJA content
tja_content = tc6infer.write_tja(onsets, bpm=bpm, audio=filename, offset=offset)
# wrtie TJA content to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
temp_tja_file.write(tja_content.encode("utf-8"))
tja_path = temp_tja_file.name
result = synthesizer.predict(
param_0=handle_file(tja_path),
param_1=handle_file(audio_path),
param_2="達人譜面 / Master",
param_3=16,
param_4=7,
param_5=5,
param_6=5,
param_7=5,
param_8=5,
param_9=5,
param_10=5,
param_11=5,
param_12=5,
param_13=5,
param_14=5,
param_15=5,
api_name="/handle",
)
oni_audio = result[1]
return oni_audio, plot, tja_content
def infer_tc7(audio, nps, bpm, offset, difficulty, level, DEVICE, MODEL):
audio_path = audio
filename = audio_path.split("/")[-1]
# Preprocess
mel_input = tc7infer.preprocess_audio(audio_path)
nps_input = torch.tensor(nps, dtype=torch.float32).to(DEVICE)
difficulty_input = torch.tensor(difficulty, dtype=torch.float32).to(DEVICE)
level_input = torch.tensor(level, dtype=torch.float32).to(DEVICE)
# Inference
don_energy, ka_energy, drumroll_energy = tc7infer.run_inference(
MODEL, mel_input, nps_input, difficulty_input, level_input, DEVICE
)
output_frame_hop_sec = HOP_LENGTH / SAMPLE_RATE
onsets = tc7infer.decode_onsets(
don_energy,
ka_energy,
drumroll_energy,
output_frame_hop_sec,
threshold=0.3,
min_distance_frames=3,
)
# Generate plot
plot = tc7infer.plot_results(
mel_input,
don_energy,
ka_energy,
drumroll_energy,
onsets,
output_frame_hop_sec,
)
# Generate TJA content
tja_content = tc7infer.write_tja(onsets, bpm=bpm, audio=filename, offset=offset)
# wrtie TJA content to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
temp_tja_file.write(tja_content.encode("utf-8"))
tja_path = temp_tja_file.name
result = synthesizer.predict(
param_0=handle_file(tja_path),
param_1=handle_file(audio_path),
param_2="達人譜面 / Master",
param_3=16,
param_4=7,
param_5=5,
param_6=5,
param_7=5,
param_8=5,
param_9=5,
param_10=5,
param_11=5,
param_12=5,
param_13=5,
param_14=5,
param_15=5,
api_name="/handle",
)
oni_audio = result[1]
return oni_audio, plot, tja_content
@spaces.GPU()
def run_inference_gpu(audio, model_choice, nps, bpm, offset, difficulty, level):
if model_choice == "TC5":
return infer_tc5(audio, nps, bpm, offset, GPU_DEVICE, tc5)
elif model_choice == "TC6":
return infer_tc6(audio, nps, bpm, offset, difficulty, level, GPU_DEVICE, tc6)
else: # TC7
return infer_tc7(audio, nps, bpm, offset, difficulty, level, GPU_DEVICE, tc7)
def run_inference_cpu(audio, model_choice, nps, bpm, offset, difficulty, level):
DEVICE = torch.device("cpu")
if model_choice == "TC5":
return infer_tc5(audio, nps, bpm, offset, DEVICE, tc5_cpu)
elif model_choice == "TC6":
return infer_tc6(audio, nps, bpm, offset, difficulty, level, DEVICE, tc6_cpu)
else: # TC7
return infer_tc7(audio, nps, bpm, offset, difficulty, level, DEVICE, tc7_cpu)
def run_inference(with_gpu, audio, model_choice, nps, bpm, offset, difficulty, level):
if with_gpu:
return run_inference_gpu(
audio, model_choice, nps, bpm, offset, difficulty, level
)
else:
return run_inference_cpu(
audio, model_choice, nps, bpm, offset, difficulty, level
)
with gr.Blocks() as demo:
gr.Markdown("# Taiko Conformer 5/6/7 Demo")
with gr.Row():
audio_input = gr.Audio(sources="upload", type="filepath", label="Input Audio")
with gr.Row():
model_choice = gr.Dropdown(
choices=["TC5", "TC6", "TC7"],
value="TC7",
label="Model Selection",
info="Choose between TaikoConformer 5, 6 or 7",
)
with gr.Row():
nps = gr.Slider(
value=5.0,
minimum=0.5,
maximum=11.0,
step=0.5,
label="NPS (Notes Per Second)",
)
bpm = gr.Slider(
value=240,
minimum=160,
maximum=640,
step=1,
label="BPM (Used by TJA Quantization)",
)
offset = gr.Slider(
value=0.0,
minimum=-5.0,
maximum=5.0,
step=0.01,
label="Offset (in seconds)",
info="Adjust the offset for TJA",
)
with gr.Row():
difficulty = gr.Slider(
value=3.0,
minimum=1.0,
maximum=3.0,
step=1.0,
label="Difficulty",
visible=False,
info="1=Normal, 2=Hard, 3=Oni",
)
level = gr.Slider(
value=8.0,
minimum=1.0,
maximum=10.0,
step=1.0,
label="Level",
visible=False,
info="Difficulty level from 1 to 10",
)
with gr.Row():
with_gpu = gr.Checkbox(
value=True,
label="Use GPU for Inference",
info="Enable this to use GPU for faster inference (if available)",
)
run_btn = gr.Button("Run Inference", variant="primary")
audio_output = gr.Audio(label="Generated Audio", type="filepath")
plot_output = gr.Plot(label="Onset/Energy Plot")
tja_output = gr.Textbox(label="TJA File Content", show_copy_button=True)
# Update visibility of TC7-specific controls based on model selection
def update_visibility(model_choice):
if model_choice == "TC7" or model_choice == "TC6":
return gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False)
model_choice.change(
update_visibility, inputs=[model_choice], outputs=[difficulty, level]
)
run_btn.click(
run_inference,
inputs=[
with_gpu,
audio_input,
model_choice,
nps,
bpm,
offset,
difficulty,
level,
],
outputs=[audio_output, plot_output, tja_output],
)
if __name__ == "__main__":
demo.launch()