File size: 10,517 Bytes
db8b2d5
812b01c
 
 
 
 
 
 
 
 
 
 
 
b7070f2
812b01c
 
 
b7070f2
812b01c
b7070f2
 
 
812b01c
 
 
b7070f2
812b01c
b7070f2
 
 
812b01c
 
 
b7070f2
812b01c
b7070f2
 
 
812b01c
 
 
 
b7070f2
812b01c
 
 
 
 
 
b7070f2
812b01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db8b2d5
812b01c
 
 
 
 
 
 
 
 
 
 
db8b2d5
812b01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7070f2
812b01c
 
 
 
 
 
 
 
 
b7070f2
812b01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db8b2d5
812b01c
 
 
 
 
 
 
 
 
 
 
db8b2d5
812b01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7070f2
812b01c
 
 
 
 
 
 
 
 
b7070f2
812b01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db8b2d5
812b01c
 
 
 
 
 
 
 
 
 
 
db8b2d5
812b01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ec713c
db8b2d5
812b01c
b7070f2
812b01c
b7070f2
812b01c
b7070f2
db8b2d5
 
 
b7070f2
db8b2d5
b7070f2
db8b2d5
b7070f2
db8b2d5
b7070f2
db8b2d5
 
 
 
 
 
 
 
 
 
 
812b01c
 
 
db8b2d5
812b01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db8b2d5
 
 
 
 
 
 
 
812b01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db8b2d5
 
 
 
 
 
 
 
 
812b01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7070f2
 
 
 
 
 
 
 
 
 
812b01c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import spaces
import gradio as gr
import torch
from tc5.config import SAMPLE_RATE, HOP_LENGTH
from tc5.model import TaikoConformer5
from tc5 import infer as tc5infer
from tc6.model import TaikoConformer6
from tc6 import infer as tc6infer
from tc7.model import TaikoConformer7
from tc7 import infer as tc7infer
from gradio_client import Client, handle_file
import tempfile

GPU_DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load model once
tc5 = TaikoConformer5.from_pretrained("JacobLinCool/taiko-conformer-5")
tc5.to(GPU_DEVICE)
tc5.eval()
tc5_cpu = TaikoConformer5.from_pretrained("JacobLinCool/taiko-conformer-5")
tc5_cpu.to("cpu")
tc5_cpu.eval()

# Load TC6 model
tc6 = TaikoConformer6.from_pretrained("JacobLinCool/taiko-conformer-6")
tc6.to(GPU_DEVICE)
tc6.eval()
tc6_cpu = TaikoConformer6.from_pretrained("JacobLinCool/taiko-conformer-6")
tc6_cpu.to("cpu")
tc6_cpu.eval()

# Load TC7 model
tc7 = TaikoConformer7.from_pretrained("JacobLinCool/taiko-conformer-7")
tc7.to(GPU_DEVICE)
tc7.eval()
tc7_cpu = TaikoConformer7.from_pretrained("JacobLinCool/taiko-conformer-7")
tc7_cpu.to("cpu")
tc7_cpu.eval()

synthesizer = Client("ryanlinjui/taiko-music-generator")


def infer_tc5(audio, nps, bpm, offset, DEVICE, MODEL):
    audio_path = audio
    filename = audio_path.split("/")[-1]
    # Preprocess
    mel_input, nps_input = tc5infer.preprocess_audio(audio_path, nps)
    # Inference
    don_energy, ka_energy, drumroll_energy = tc5infer.run_inference(
        MODEL, mel_input, nps_input, DEVICE
    )
    output_frame_hop_sec = HOP_LENGTH / SAMPLE_RATE
    onsets = tc5infer.decode_onsets(
        don_energy,
        ka_energy,
        drumroll_energy,
        output_frame_hop_sec,
        threshold=0.3,
        min_distance_frames=3,
    )
    # Generate plot
    plot = tc5infer.plot_results(
        mel_input,
        don_energy,
        ka_energy,
        drumroll_energy,
        onsets,
        output_frame_hop_sec,
    )
    # Generate TJA content
    tja_content = tc5infer.write_tja(onsets, bpm=bpm, audio=filename, offset=offset)

    # wrtie TJA content to a temporary file
    with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
        temp_tja_file.write(tja_content.encode("utf-8"))
        tja_path = temp_tja_file.name

    result = synthesizer.predict(
        param_0=handle_file(tja_path),
        param_1=handle_file(audio_path),
        param_2="達人譜面 / Master",
        param_3=16,
        param_4=7,
        param_5=5,
        param_6=5,
        param_7=5,
        param_8=5,
        param_9=5,
        param_10=5,
        param_11=5,
        param_12=5,
        param_13=5,
        param_14=5,
        param_15=5,
        api_name="/handle",
    )

    oni_audio = result[1]

    return oni_audio, plot, tja_content


def infer_tc6(audio, nps, bpm, offset, difficulty, level, DEVICE, MODEL):
    audio_path = audio
    filename = audio_path.split("/")[-1]
    # Preprocess
    mel_input = tc6infer.preprocess_audio(audio_path)
    nps_input = torch.tensor(nps, dtype=torch.float32).to(DEVICE)
    difficulty_input = torch.tensor(difficulty, dtype=torch.float32).to(DEVICE)
    level_input = torch.tensor(level, dtype=torch.float32).to(DEVICE)
    # Inference
    don_energy, ka_energy, drumroll_energy = tc6infer.run_inference(
        MODEL, mel_input, nps_input, difficulty_input, level_input, DEVICE
    )
    output_frame_hop_sec = HOP_LENGTH / SAMPLE_RATE
    onsets = tc6infer.decode_onsets(
        don_energy,
        ka_energy,
        drumroll_energy,
        output_frame_hop_sec,
        threshold=0.3,
        min_distance_frames=3,
    )
    # Generate plot
    plot = tc6infer.plot_results(
        mel_input,
        don_energy,
        ka_energy,
        drumroll_energy,
        onsets,
        output_frame_hop_sec,
    )
    # Generate TJA content
    tja_content = tc6infer.write_tja(onsets, bpm=bpm, audio=filename, offset=offset)

    # wrtie TJA content to a temporary file
    with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
        temp_tja_file.write(tja_content.encode("utf-8"))
        tja_path = temp_tja_file.name

    result = synthesizer.predict(
        param_0=handle_file(tja_path),
        param_1=handle_file(audio_path),
        param_2="達人譜面 / Master",
        param_3=16,
        param_4=7,
        param_5=5,
        param_6=5,
        param_7=5,
        param_8=5,
        param_9=5,
        param_10=5,
        param_11=5,
        param_12=5,
        param_13=5,
        param_14=5,
        param_15=5,
        api_name="/handle",
    )

    oni_audio = result[1]

    return oni_audio, plot, tja_content


def infer_tc7(audio, nps, bpm, offset, difficulty, level, DEVICE, MODEL):
    audio_path = audio
    filename = audio_path.split("/")[-1]
    # Preprocess
    mel_input = tc7infer.preprocess_audio(audio_path)
    nps_input = torch.tensor(nps, dtype=torch.float32).to(DEVICE)
    difficulty_input = torch.tensor(difficulty, dtype=torch.float32).to(DEVICE)
    level_input = torch.tensor(level, dtype=torch.float32).to(DEVICE)
    # Inference
    don_energy, ka_energy, drumroll_energy = tc7infer.run_inference(
        MODEL, mel_input, nps_input, difficulty_input, level_input, DEVICE
    )
    output_frame_hop_sec = HOP_LENGTH / SAMPLE_RATE
    onsets = tc7infer.decode_onsets(
        don_energy,
        ka_energy,
        drumroll_energy,
        output_frame_hop_sec,
        threshold=0.3,
        min_distance_frames=3,
    )
    # Generate plot
    plot = tc7infer.plot_results(
        mel_input,
        don_energy,
        ka_energy,
        drumroll_energy,
        onsets,
        output_frame_hop_sec,
    )
    # Generate TJA content
    tja_content = tc7infer.write_tja(onsets, bpm=bpm, audio=filename, offset=offset)

    # wrtie TJA content to a temporary file
    with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
        temp_tja_file.write(tja_content.encode("utf-8"))
        tja_path = temp_tja_file.name

    result = synthesizer.predict(
        param_0=handle_file(tja_path),
        param_1=handle_file(audio_path),
        param_2="達人譜面 / Master",
        param_3=16,
        param_4=7,
        param_5=5,
        param_6=5,
        param_7=5,
        param_8=5,
        param_9=5,
        param_10=5,
        param_11=5,
        param_12=5,
        param_13=5,
        param_14=5,
        param_15=5,
        api_name="/handle",
    )

    oni_audio = result[1]

    return oni_audio, plot, tja_content


@spaces.GPU()
def run_inference_gpu(audio, model_choice, nps, bpm, offset, difficulty, level):
    if model_choice == "TC5":
        return infer_tc5(audio, nps, bpm, offset, GPU_DEVICE, tc5)
    elif model_choice == "TC6":
        return infer_tc6(audio, nps, bpm, offset, difficulty, level, GPU_DEVICE, tc6)
    else:  # TC7
        return infer_tc7(audio, nps, bpm, offset, difficulty, level, GPU_DEVICE, tc7)


def run_inference_cpu(audio, model_choice, nps, bpm, offset, difficulty, level):
    DEVICE = torch.device("cpu")
    if model_choice == "TC5":
        return infer_tc5(audio, nps, bpm, offset, DEVICE, tc5_cpu)
    elif model_choice == "TC6":
        return infer_tc6(audio, nps, bpm, offset, difficulty, level, DEVICE, tc6_cpu)
    else:  # TC7
        return infer_tc7(audio, nps, bpm, offset, difficulty, level, DEVICE, tc7_cpu)


def run_inference(with_gpu, audio, model_choice, nps, bpm, offset, difficulty, level):
    if with_gpu:
        return run_inference_gpu(
            audio, model_choice, nps, bpm, offset, difficulty, level
        )
    else:
        return run_inference_cpu(
            audio, model_choice, nps, bpm, offset, difficulty, level
        )


with gr.Blocks() as demo:
    gr.Markdown("# Taiko Conformer 5/6/7 Demo")
    with gr.Row():
        audio_input = gr.Audio(sources="upload", type="filepath", label="Input Audio")

    with gr.Row():
        model_choice = gr.Dropdown(
            choices=["TC5", "TC6", "TC7"],
            value="TC7",
            label="Model Selection",
            info="Choose between TaikoConformer 5, 6 or 7",
        )

    with gr.Row():
        nps = gr.Slider(
            value=5.0,
            minimum=0.5,
            maximum=11.0,
            step=0.5,
            label="NPS (Notes Per Second)",
        )
        bpm = gr.Slider(
            value=240,
            minimum=160,
            maximum=640,
            step=1,
            label="BPM (Used by TJA Quantization)",
        )
        offset = gr.Slider(
            value=0.0,
            minimum=-5.0,
            maximum=5.0,
            step=0.01,
            label="Offset (in seconds)",
            info="Adjust the offset for TJA",
        )

    with gr.Row():
        difficulty = gr.Slider(
            value=3.0,
            minimum=1.0,
            maximum=3.0,
            step=1.0,
            label="Difficulty",
            visible=False,
            info="1=Normal, 2=Hard, 3=Oni",
        )
        level = gr.Slider(
            value=8.0,
            minimum=1.0,
            maximum=10.0,
            step=1.0,
            label="Level",
            visible=False,
            info="Difficulty level from 1 to 10",
        )

    with gr.Row():
        with_gpu = gr.Checkbox(
            value=True,
            label="Use GPU for Inference",
            info="Enable this to use GPU for faster inference (if available)",
        )

    run_btn = gr.Button("Run Inference", variant="primary")

    audio_output = gr.Audio(label="Generated Audio", type="filepath")
    plot_output = gr.Plot(label="Onset/Energy Plot")
    tja_output = gr.Textbox(label="TJA File Content", show_copy_button=True)

    # Update visibility of TC7-specific controls based on model selection
    def update_visibility(model_choice):
        if model_choice == "TC7" or model_choice == "TC6":
            return gr.update(visible=True), gr.update(visible=True)
        else:
            return gr.update(visible=False), gr.update(visible=False)

    model_choice.change(
        update_visibility, inputs=[model_choice], outputs=[difficulty, level]
    )

    run_btn.click(
        run_inference,
        inputs=[
            with_gpu,
            audio_input,
            model_choice,
            nps,
            bpm,
            offset,
            difficulty,
            level,
        ],
        outputs=[audio_output, plot_output, tja_output],
    )

if __name__ == "__main__":
    demo.launch()