Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,213 Bytes
812b01c db8b2d5 812b01c db8b2d5 812b01c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import time
import torch
import torchaudio
import matplotlib.pyplot as plt
import numpy as np
from .config import SAMPLE_RATE, N_MELS, HOP_LENGTH
import torch.profiler
# --- PREPROCESSING (match training) ---
def preprocess_audio(audio_path):
wav, sr = torchaudio.load(audio_path)
wav = wav.mean(dim=0) # mono
if sr != SAMPLE_RATE:
wav = torchaudio.functional.resample(wav, sr, SAMPLE_RATE)
wav = wav / (wav.abs().max() + 1e-8) # Normalize audio
mel_transform = torchaudio.transforms.MelSpectrogram(
sample_rate=SAMPLE_RATE,
n_mels=N_MELS,
hop_length=HOP_LENGTH,
n_fft=2048,
)
mel = mel_transform(wav)
return mel # mel is (N_MELS, T_mel)
# --- INFERENCE ---
def run_inference(model, mel_input, nps_input, difficulty_input, level_input, device):
model.eval()
with torch.no_grad():
mel = mel_input.to(device).unsqueeze(0) # (1, N_MELS, T_mel)
nps = nps_input.to(device).unsqueeze(0) # (1,)
difficulty = difficulty_input.to(device).unsqueeze(0) # (1,)
level = level_input.to(device).unsqueeze(0) # (1,)
mel_cnn_input = mel.unsqueeze(1) # (1, 1, N_MELS, T_mel)
conformer_lengths = torch.tensor(
[mel_cnn_input.shape[-1]], dtype=torch.long, device=device
)
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
*(
[torch.profiler.ProfilerActivity.CUDA]
if device.type == "cuda"
else []
),
],
record_shapes=True,
profile_memory=True,
with_stack=False,
with_flops=True,
) as prof:
out_dict = model(mel_cnn_input, conformer_lengths, nps, difficulty, level)
print(
prof.key_averages().table(
sort_by=(
"self_cuda_memory_usage"
if device.type == "cuda"
else "self_cpu_time_total"
),
row_limit=20,
)
)
energies = out_dict["presence"].squeeze(0).cpu().numpy()
don_energy = energies[:, 0]
ka_energy = energies[:, 1]
drumroll_energy = energies[:, 2]
return don_energy, ka_energy, drumroll_energy
# --- DECODE TO ONSETS ---
def decode_onsets(
don_energy,
ka_energy,
drumroll_energy,
hop_sec,
threshold=0.5,
min_distance_frames=3,
):
results = []
T_out = len(don_energy)
last_onset_frame = -min_distance_frames
for i in range(1, T_out - 1): # Iterate considering neighbors for peak detection
if i < last_onset_frame + min_distance_frames:
continue
e_don, e_ka, e_drum = don_energy[i], ka_energy[i], drumroll_energy[i]
energies_at_i = {
1: e_don,
2: e_ka,
5: e_drum,
} # Type mapping: 1:Don, 2:Ka, 5:Drumroll
# Find which energy is max and if it's a peak above threshold
# Sort by energy value descending to prioritize higher energy in case of ties for peak condition
sorted_types_by_energy = sorted(
energies_at_i.keys(), key=lambda x: energies_at_i[x], reverse=True
)
detected_this_frame = False
for onset_type in sorted_types_by_energy:
current_energy_series = None
if onset_type == 1:
current_energy_series = don_energy
elif onset_type == 2:
current_energy_series = ka_energy
elif onset_type == 5:
current_energy_series = drumroll_energy
energy_val = current_energy_series[i]
if (
energy_val > threshold
and energy_val > current_energy_series[i - 1]
and energy_val > current_energy_series[i + 1]
):
# Check if this energy is the highest among the three at this frame
# This check is implicitly handled by iterating `sorted_types_by_energy`
# and breaking after the first detection.
results.append((i * hop_sec, onset_type))
last_onset_frame = i
detected_this_frame = True
break # Only one onset type per frame
return results
# --- VISUALIZATION ---
def plot_results(
mel_spectrogram,
don_energy,
ka_energy,
drumroll_energy,
onsets,
hop_sec,
out_path=None,
):
# mel_spectrogram is (N_MELS, T_mel)
T_mel = mel_spectrogram.shape[1]
T_out = len(don_energy) # Length of energy arrays (model output time dimension)
# Time axes
time_axis_mel = np.arange(T_mel) * (HOP_LENGTH / SAMPLE_RATE)
# hop_sec for model output is (HOP_LENGTH * TIME_SUB) / SAMPLE_RATE
# However, the model output T_out is related to T_mel (input to CNN).
# If CNN does not change time dimension, T_out = T_mel.
# If TIME_SUB is used for label generation, T_out = T_mel / TIME_SUB.
# The `lengths` passed to conformer in `run_inference` is T_mel.
# The output of conformer `x` has shape (B, T, D_MODEL). This T is `lengths`.
# So, T_out from model is T_mel.
# The `hop_sec` for onsets should be based on the model output frame rate.
# If model output T_out corresponds to T_mel, then hop_sec for plotting energies is HOP_LENGTH / SAMPLE_RATE.
# The `hop_sec` passed to `decode_onsets` is (HOP_LENGTH * TIME_SUB) / SAMPLE_RATE.
# This seems inconsistent. Let's clarify: `TIME_SUB` is used in `preprocess.py` to determine `T_sub` for labels.
# The model's CNN output time dimension T_cnn is used to pad/truncate labels in `collate_fn`.
# In `model.py`, the CNN does not stride in time. So T_cnn_out = T_mel_input_to_CNN.
# The `lengths` for the conformer is based on this T_cnn_out.
# So, the output of the regressor `presence` (B, T_cnn_out, 3) has T_cnn_out time steps.
# Each step corresponds to `HOP_LENGTH / SAMPLE_RATE` seconds if TIME_SUB is not involved in downsampling features for the conformer.
# Let's assume the `hop_sec` used for `decode_onsets` is correct for interpreting model output frames.
time_axis_energies = np.arange(T_out) * hop_sec
fig, ax1 = plt.subplots(figsize=(100, 10))
# Plot Mel Spectrogram on ax1
mel_db = torchaudio.functional.amplitude_to_DB(
mel_spectrogram, multiplier=10.0, amin=1e-10, db_multiplier=0.0
)
img = ax1.imshow(
mel_db.numpy(),
aspect="auto",
origin="lower",
cmap="magma",
extent=[time_axis_mel[0], time_axis_mel[-1], 0, N_MELS],
)
ax1.set_title("Mel Spectrogram with Predicted Energies and Onsets")
ax1.set_xlabel("Time (s)")
ax1.set_ylabel("Mel Bin")
fig.colorbar(img, ax=ax1, format="%+2.0f dB")
# Create a second y-axis for energies
ax2 = ax1.twinx()
ax2.plot(time_axis_energies, don_energy, label="Don Energy", color="red")
ax2.plot(time_axis_energies, ka_energy, label="Ka Energy", color="blue")
ax2.plot(
time_axis_energies, drumroll_energy, label="Drumroll Energy", color="green"
)
ax2.set_ylabel("Energy")
ax2.set_ylim(0, 1.2) # Assuming energies are somewhat normalized or bounded
# Overlay onsets from decode_onsets (t is already in seconds)
labeled_types = set()
# Group drumrolls into segments (reuse logic from write_tja)
drumroll_times = [t_sec for t_sec, typ in onsets if typ == 5]
drumroll_times.sort()
drumroll_segments = []
if drumroll_times:
seg_start = drumroll_times[0]
prev = drumroll_times[0]
for t in drumroll_times[1:]:
if t - prev <= hop_sec * 6: # up to 5-frame gap
prev = t
else:
drumroll_segments.append((seg_start, prev))
seg_start = t
prev = t
drumroll_segments.append((seg_start, prev))
# Plot Don/Ka onsets as vertical lines
for t_sec, typ in onsets:
if typ == 5:
continue # skip drumroll onsets
color_map = {1: "darkred", 2: "darkblue"}
label_map = {1: "Don Onset", 2: "Ka Onset"}
line_color = color_map.get(typ, "black")
line_label = label_map.get(typ, f"Type {typ} Onset")
if typ not in labeled_types:
ax1.axvline(
t_sec, color=line_color, linestyle="--", alpha=0.9, label=line_label
)
labeled_types.add(typ)
else:
ax1.axvline(t_sec, color=line_color, linestyle="--", alpha=0.9)
# Plot drumroll segments as shaded regions
for seg_start, seg_end in drumroll_segments:
ax1.axvspan(
seg_start,
seg_end + hop_sec,
color="green",
alpha=0.2,
label="Drumroll Segment" if "drumroll" not in labeled_types else None,
)
labeled_types.add("drumroll")
# Combine legends from both axes
lines, labels = ax1.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax2.legend(lines + lines2, labels + labels2, loc="upper right")
fig.tight_layout()
# Return plot as image buffer or save to file if path provided
if out_path:
plt.savefig(out_path)
print(f"Saved plot to {out_path}")
plt.close(fig)
return out_path
else:
# Return plot as in-memory buffer
return fig
def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav", offset=0):
# TJA types: 0:no note, 1:Don, 2:Ka, 3:BigDon, 4:BigKa, 5:DrumrollStart, 8:DrumrollEnd
# Model output types: 1:Don, 2:Ka, 5:Drumroll (interpreted as start/single)
sec_per_beat = 60 / bpm
beats_per_measure = 4 # Assuming 4/4 time signature
sec_per_measure = sec_per_beat * beats_per_measure
# Step 1: Map onsets to (measure_idx, slot, typ)
slot_events = []
for t, typ in onsets:
measure_idx = int(t // sec_per_measure)
t_in_measure = t % sec_per_measure
slot = int(round(t_in_measure / sec_per_measure * quantize))
if slot >= quantize:
slot = quantize - 1
slot_events.append((measure_idx, slot, typ))
# Step 2: Build measure/slot grid
if slot_events:
max_measure_idx = max(m for m, _, _ in slot_events)
else:
max_measure_idx = -1
measures = {i: [0] * quantize for i in range(max_measure_idx + 1)}
# Step 3: Place Don/Ka, collect drumrolls
drumroll_slots = set()
for m, s, typ in slot_events:
if typ in [1, 2]:
measures[m][s] = typ
elif typ == 5:
drumroll_slots.add((m, s))
# Step 4: Process drumrolls into contiguous regions, mark 5 (start) and 8 (end)
# Flatten all slots to a list of (measure, slot) sorted
drumroll_list = sorted(list(drumroll_slots))
# Group into contiguous regions (allowing a gap of 5 slots)
grouped = []
group = []
for ms in drumroll_list:
if not group:
group = [ms]
else:
last_m, last_s = group[-1]
m, s = ms
# Calculate slot distance, considering measure wrap
slot_dist = None
if m == last_m:
slot_dist = s - last_s
elif m == last_m + 1 and last_s <= quantize - 1:
slot_dist = (quantize - 1 - last_s) + s + 1
else:
slot_dist = None
# Allow gap of up to 5 slots (slot_dist <= 6)
if slot_dist is not None and 1 <= slot_dist <= 6:
group.append(ms)
else:
grouped.append(group)
group = [ms]
if group:
grouped.append(group)
# Mark 5 (start) and 8 (end) for each group
for region in grouped:
if len(region) == 1:
m, s = region[0]
measures[m][s] = 5
# Place 8 in next slot (or next measure if at end)
if s < quantize - 1:
measures[m][s + 1] = 8
elif m < max_measure_idx:
measures[m + 1][0] = 8
else:
m_start, s_start = region[0]
m_end, s_end = region[-1]
measures[m_start][s_start] = 5
measures[m_end][s_end] = 8
# Fill 0 for middle slots (already 0 by default)
# Step 5: Generate TJA content
tja_content = []
tja_content.append(f"TITLE:{audio} (TC7, {time.strftime('%Y-%m-%d %H:%M:%S')})")
tja_content.append(f"BPM:{bpm}")
tja_content.append(f"WAVE:{audio}")
tja_content.append(f"OFFSET:{offset}")
tja_content.append("COURSE:Oni\nLEVEL:9\n")
tja_content.append("#START")
for i in range(max_measure_idx + 1):
notes = measures.get(i, [0] * quantize)
line = "".join(str(n) for n in notes)
tja_content.append(line + ",")
tja_content.append("#END")
tja_string = "\n".join(tja_content)
# If out_path is provided, also write to file
if out_path:
with open(out_path, "w", encoding="utf-8") as f:
f.write(tja_string)
print(f"TJA chart saved to {out_path}")
return tja_string
|