Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
MODEL_ID = "unsloth/Qwen3-Coder-30B-A3B-Instruct-GGUF" | |
# Pega o token do secret HF_TOKEN que você adicionou no Space | |
token = os.environ.get("HF_TOKEN") | |
# Inicializa o cliente; se token for None, InferenceClient tentará usar o token local/config. | |
client = InferenceClient(model=MODEL_ID, token=token) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
# MODE: escolha "stream_mode = True" para token por token, ou False para resposta completa de uma vez | |
stream_mode = True | |
if stream_mode: | |
response = "" | |
# stream=True entrega chunks — iteramos e extraímos 'content' do delta | |
for chunk in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
# chunk pode ser dataclass/obj ou dict-like; tentamos extrair o texto com segurança | |
token_piece = "" | |
try: | |
delta = chunk.choices[0].delta | |
if isinstance(delta, dict): | |
token_piece = delta.get("content", "") or "" | |
else: | |
# objeto dataclass-like | |
token_piece = getattr(delta, "content", "") or "" | |
except Exception: | |
# fallback genérico (caso a API retorne formato diferente) | |
token_piece = str(chunk) | |
response += token_piece | |
yield response | |
else: | |
# Sem streaming: recupera a resposta completa | |
completion = client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=False, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
# conforme docs, a resposta completa aparece em: | |
text = completion.choices[0].message.content | |
yield text | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |