import os import gradio as gr from huggingface_hub import InferenceClient MODEL_ID = "unsloth/Qwen3-Coder-30B-A3B-Instruct-GGUF" # Pega o token do secret HF_TOKEN que você adicionou no Space token = os.environ.get("HF_TOKEN") # Inicializa o cliente; se token for None, InferenceClient tentará usar o token local/config. client = InferenceClient(model=MODEL_ID, token=token) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # MODE: escolha "stream_mode = True" para token por token, ou False para resposta completa de uma vez stream_mode = True if stream_mode: response = "" # stream=True entrega chunks — iteramos e extraímos 'content' do delta for chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): # chunk pode ser dataclass/obj ou dict-like; tentamos extrair o texto com segurança token_piece = "" try: delta = chunk.choices[0].delta if isinstance(delta, dict): token_piece = delta.get("content", "") or "" else: # objeto dataclass-like token_piece = getattr(delta, "content", "") or "" except Exception: # fallback genérico (caso a API retorne formato diferente) token_piece = str(chunk) response += token_piece yield response else: # Sem streaming: recupera a resposta completa completion = client.chat_completion( messages, max_tokens=max_tokens, stream=False, temperature=temperature, top_p=top_p, ) # conforme docs, a resposta completa aparece em: text = completion.choices[0].message.content yield text demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()