01Yassine's picture
Update index.html
cb75d3d verified
raw
history blame
7.79 kB
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width" />
<title>Iqra’Eval Shared Task</title>
<style>
/* Color Palette */
:root {
--navy-blue: #001f4d;
--coral: #ff6f61;
--light-gray: #f5f7fa;
--text-dark: #222;
}
body {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
background-color: var(--light-gray);
color: var(--text-dark);
margin: 20px;
line-height: 1.6;
}
h1, h2, h3 {
color: var(--navy-blue);
font-weight: 700;
margin-top: 1.2em;
}
h1 {
text-align: center;
font-size: 2.8rem;
margin-bottom: 0.3em;
}
h2 {
border-bottom: 3px solid var(--coral);
padding-bottom: 0.3em;
}
h3 {
color: var(--coral);
margin-top: 1em;
}
p {
max-width: 900px;
margin: 0.8em auto;
}
strong {
color: var(--navy-blue);
}
ul {
max-width: 900px;
margin: 0.5em auto 1.5em auto;
padding-left: 1.2em;
}
ul li {
margin: 0.4em 0;
}
code {
background-color: #eef4f8;
color: var(--navy-blue);
padding: 2px 6px;
border-radius: 4px;
font-family: Consolas, monospace;
font-size: 0.9em;
}
pre {
max-width: 900px;
background-color: #eef4f8;
color: var(--navy-blue);
padding: 1em;
border-radius: 8px;
overflow-x: auto;
font-family: Consolas, monospace;
font-size: 0.95em;
margin: 0.8em auto;
}
a {
color: var(--coral);
text-decoration: none;
}
a:hover {
text-decoration: underline;
}
.card {
max-width: 1200px;
background: white;
margin: 0 auto 40px auto;
padding: 2em 2.5em;
box-shadow: 0 4px 14px rgba(0,0,0,0.1);
border-radius: 12px;
}
/* Centering images and captions */
div img {
display: block;
margin: 20px auto;
max-width: 100%;
height: auto;
border-radius: 8px;
box-shadow: 0 4px 8px rgba(0,31,77,0.15);
}
.centered p {
text-align: center;
font-style: italic;
color: var(--navy-blue);
margin-top: 0.4em;
}
.highlight {
color: var(--coral);
font-weight: 700;
}
/* Lists inside paragraphs */
p > ul {
margin-top: 0.3em;
}
</style>
</head>
<body>
<div class="card">
<h1>Iqra’Eval Shared Task</h1>
<div>
<img src="IqraEval.png" alt="IqraEval Logo" />
</div>
<!-- Overview Section -->
<h2>Overview</h2>
<p>
<strong>Iqra'Eval</strong> is a shared task aimed at advancing <strong>automatic assessment of Qur’anic recitation pronunciation</strong> by leveraging computational methods to detect and diagnose pronunciation errors. The focus on Qur’anic recitation provides a standardized and well-defined context for evaluating Modern Standard Arabic (MSA) pronunciation.
</p>
<p>
Participants will develop systems capable of detecting mispronunciations (e.g., substitution, deletion, or insertion of phonemes).
</p>
<!-- Timeline Section -->
<h2>Timeline</h2>
<ul>
<li><strong>June 1, 2025</strong>: Official announcement of the shared task</li>
<li><strong>June 10, 2025</strong>: Release of training data, development set (QuranMB), phonetizer script, and baseline systems</li>
<li><strong>July 24, 2025</strong>: Registration deadline and release of test data</li>
<li><strong>July 27, 2025</strong>: End of evaluation cycle (test set submission closes)</li>
<li><strong>July 30, 2025</strong>: Final results released</li>
<li><strong>August 15, 2025</strong>: System description paper submissions due</li>
<li><strong>August 22, 2025</strong>: Notification of acceptance</li>
<li><strong>September 5, 2025</strong>: Camera-ready versions due</li>
</ul>
<!-- Task Description -->
<h2>Task Description: Quranic Mispronunciation Detection System</h2>
<p>
The aim is to design a model to detect and provide detailed feedback on mispronunciations in Quranic recitations.
Users read aloud vowelized Quranic verses; this model predicts the phoneme sequence uttered by the speaker, which may contain mispronunciations.
Models are evaluated on the <strong>QuranMB.v2</strong> dataset, which contains human‐annotated mispronunciations.
</p>
<div class="centered">
<img src="task.png" alt="System Overview" />
<p>Figure: Overview of the Mispronunciation Detection Workflow</p>
</div>
<h3>1. Read the Verse</h3>
<p>
The user is shown a <strong>Reference Verse</strong> (What should have been said) in Arabic script along with its corresponding <strong>Reference Phoneme Sequence</strong>.
</p>
<p><strong>Example:</strong></p>
<ul>
<li><strong>Arabic:</strong> إِنَّ الصَّفَا وَالْمَرْوَةَ مِنْ شَعَائِرِ اللَّهِ</li>
<li>
<strong>Phoneme:</strong>
<code>&lt; i n n a SS A f aa w a l m a r w a t a m i n $ a E a a &lt; i r i l l a h i</code>
</li>
</ul>
<h3>2. Save Recording</h3>
<p>
The user recites the verse aloud; the system captures and stores the audio waveform for subsequent analysis.
</p>
<h3>3. Mispronunciation Detection</h3>
<p>
The stored audio is fed into a <strong>Mispronunciation Detection Model</strong>.
This model predicts the phoneme sequence uttered by the speaker, which may contain mispronunciations.
</p>
<p><strong>Example of Mispronunciation:</strong></p>
<ul>
<li><strong>Reference Phoneme Sequence (What should have been said):</strong> <code>&lt; i n n a SS A f aa w a l m a r w a t a m i n $ a E a a &lt; i r i l l a h i</code></li>
<li><strong>Model Phoneme Prediction (What is predicted):</strong> <code>&lt; i n n a SS A f aa w a l m a r w a t a m i n s a E a a &lt; i r u l l a h i</code></li>
<li>
<strong>Annotated Phoneme Sequence (What is said):</strong>
<code>&lt; i n n a SS A f aa w a l m a r w <span class="highlight">s</span> a E a a &lt; i <span class="highlight">r u</span> l l a h i</code>
</li>
</ul>
<p>
In this case, the phoneme <code>$</code> was mispronounced as <code>s</code>, and <code>i</code> was mispronounced as <code>u</code>.
</p>
<p>
The annotated phoneme sequence indicates that the phoneme <code>ta</code> was omitted, but the model failed to detect it.
</p>
<h2>Training Dataset: Description</h2>
<p>
All data are hosted on Hugging Face. Two main splits are provided:
</p>
<ul>
<li>
<strong>Training set:</strong> 79 hours of Modern Standard Arabic (MSA) Quran recitations (5,167 audio files)
</li>
<li>
<strong>Evaluation set:</strong> QuranMB.v2 dataset with phoneme-level mispronunciation annotations, which includes:
<ul>
<li>QuranMB-Train: 9 hours (1,218 files) for development</li>
<li>QuranMB-Test: 8 hours (1,018 files) for evaluation</li>
</ul>
</li>
</ul>
<h2>Submission Guidelines</h2>
<p>
Participants should submit their predicted phoneme sequences on the test set by the deadline (July 27, 2025). Submissions will be automatically evaluated using the official scoring scripts.
</p>
<h2>Evaluation Metrics</h2>
<p>
Systems will be evaluated based on phoneme error rates (PER) computed over the test set, measuring accuracy in detecting and localizing mispronunciations.
</p>
<h2>Contact and Support</h2>
<p>
For inquiries and support, reach out to the task coordinators at
<a href="mailto:support@iqraeval.org">support@iqraeval.org</a>.
</p>
</div>
</body>
</html>