File size: 7,787 Bytes
148368a 4add227 c3ec9ca 4add227 cb75d3d 4add227 c3ec9ca 4add227 18d0f01 4add227 c3ec9ca 4add227 c3ec9ca 148368a c3ec9ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width" />
<title>Iqra’Eval Shared Task</title>
<style>
/* Color Palette */
:root {
--navy-blue: #001f4d;
--coral: #ff6f61;
--light-gray: #f5f7fa;
--text-dark: #222;
}
body {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
background-color: var(--light-gray);
color: var(--text-dark);
margin: 20px;
line-height: 1.6;
}
h1, h2, h3 {
color: var(--navy-blue);
font-weight: 700;
margin-top: 1.2em;
}
h1 {
text-align: center;
font-size: 2.8rem;
margin-bottom: 0.3em;
}
h2 {
border-bottom: 3px solid var(--coral);
padding-bottom: 0.3em;
}
h3 {
color: var(--coral);
margin-top: 1em;
}
p {
max-width: 900px;
margin: 0.8em auto;
}
strong {
color: var(--navy-blue);
}
ul {
max-width: 900px;
margin: 0.5em auto 1.5em auto;
padding-left: 1.2em;
}
ul li {
margin: 0.4em 0;
}
code {
background-color: #eef4f8;
color: var(--navy-blue);
padding: 2px 6px;
border-radius: 4px;
font-family: Consolas, monospace;
font-size: 0.9em;
}
pre {
max-width: 900px;
background-color: #eef4f8;
color: var(--navy-blue);
padding: 1em;
border-radius: 8px;
overflow-x: auto;
font-family: Consolas, monospace;
font-size: 0.95em;
margin: 0.8em auto;
}
a {
color: var(--coral);
text-decoration: none;
}
a:hover {
text-decoration: underline;
}
.card {
max-width: 1200px;
background: white;
margin: 0 auto 40px auto;
padding: 2em 2.5em;
box-shadow: 0 4px 14px rgba(0,0,0,0.1);
border-radius: 12px;
}
/* Centering images and captions */
div img {
display: block;
margin: 20px auto;
max-width: 100%;
height: auto;
border-radius: 8px;
box-shadow: 0 4px 8px rgba(0,31,77,0.15);
}
.centered p {
text-align: center;
font-style: italic;
color: var(--navy-blue);
margin-top: 0.4em;
}
.highlight {
color: var(--coral);
font-weight: 700;
}
/* Lists inside paragraphs */
p > ul {
margin-top: 0.3em;
}
</style>
</head>
<body>
<div class="card">
<h1>Iqra’Eval Shared Task</h1>
<div>
<img src="IqraEval.png" alt="IqraEval Logo" />
</div>
<!-- Overview Section -->
<h2>Overview</h2>
<p>
<strong>Iqra'Eval</strong> is a shared task aimed at advancing <strong>automatic assessment of Qur’anic recitation pronunciation</strong> by leveraging computational methods to detect and diagnose pronunciation errors. The focus on Qur’anic recitation provides a standardized and well-defined context for evaluating Modern Standard Arabic (MSA) pronunciation.
</p>
<p>
Participants will develop systems capable of detecting mispronunciations (e.g., substitution, deletion, or insertion of phonemes).
</p>
<!-- Timeline Section -->
<h2>Timeline</h2>
<ul>
<li><strong>June 1, 2025</strong>: Official announcement of the shared task</li>
<li><strong>June 10, 2025</strong>: Release of training data, development set (QuranMB), phonetizer script, and baseline systems</li>
<li><strong>July 24, 2025</strong>: Registration deadline and release of test data</li>
<li><strong>July 27, 2025</strong>: End of evaluation cycle (test set submission closes)</li>
<li><strong>July 30, 2025</strong>: Final results released</li>
<li><strong>August 15, 2025</strong>: System description paper submissions due</li>
<li><strong>August 22, 2025</strong>: Notification of acceptance</li>
<li><strong>September 5, 2025</strong>: Camera-ready versions due</li>
</ul>
<!-- Task Description -->
<h2>Task Description: Quranic Mispronunciation Detection System</h2>
<p>
The aim is to design a model to detect and provide detailed feedback on mispronunciations in Quranic recitations.
Users read aloud vowelized Quranic verses; this model predicts the phoneme sequence uttered by the speaker, which may contain mispronunciations.
Models are evaluated on the <strong>QuranMB.v2</strong> dataset, which contains human‐annotated mispronunciations.
</p>
<div class="centered">
<img src="task.png" alt="System Overview" />
<p>Figure: Overview of the Mispronunciation Detection Workflow</p>
</div>
<h3>1. Read the Verse</h3>
<p>
The user is shown a <strong>Reference Verse</strong> (What should have been said) in Arabic script along with its corresponding <strong>Reference Phoneme Sequence</strong>.
</p>
<p><strong>Example:</strong></p>
<ul>
<li><strong>Arabic:</strong> إِنَّ الصَّفَا وَالْمَرْوَةَ مِنْ شَعَائِرِ اللَّهِ</li>
<li>
<strong>Phoneme:</strong>
<code>< i n n a SS A f aa w a l m a r w a t a m i n $ a E a a < i r i l l a h i</code>
</li>
</ul>
<h3>2. Save Recording</h3>
<p>
The user recites the verse aloud; the system captures and stores the audio waveform for subsequent analysis.
</p>
<h3>3. Mispronunciation Detection</h3>
<p>
The stored audio is fed into a <strong>Mispronunciation Detection Model</strong>.
This model predicts the phoneme sequence uttered by the speaker, which may contain mispronunciations.
</p>
<p><strong>Example of Mispronunciation:</strong></p>
<ul>
<li><strong>Reference Phoneme Sequence (What should have been said):</strong> <code>< i n n a SS A f aa w a l m a r w a t a m i n $ a E a a < i r i l l a h i</code></li>
<li><strong>Model Phoneme Prediction (What is predicted):</strong> <code>< i n n a SS A f aa w a l m a r w a t a m i n s a E a a < i r u l l a h i</code></li>
<li>
<strong>Annotated Phoneme Sequence (What is said):</strong>
<code>< i n n a SS A f aa w a l m a r w <span class="highlight">s</span> a E a a < i <span class="highlight">r u</span> l l a h i</code>
</li>
</ul>
<p>
In this case, the phoneme <code>$</code> was mispronounced as <code>s</code>, and <code>i</code> was mispronounced as <code>u</code>.
</p>
<p>
The annotated phoneme sequence indicates that the phoneme <code>ta</code> was omitted, but the model failed to detect it.
</p>
<h2>Training Dataset: Description</h2>
<p>
All data are hosted on Hugging Face. Two main splits are provided:
</p>
<ul>
<li>
<strong>Training set:</strong> 79 hours of Modern Standard Arabic (MSA) Quran recitations (5,167 audio files)
</li>
<li>
<strong>Evaluation set:</strong> QuranMB.v2 dataset with phoneme-level mispronunciation annotations, which includes:
<ul>
<li>QuranMB-Train: 9 hours (1,218 files) for development</li>
<li>QuranMB-Test: 8 hours (1,018 files) for evaluation</li>
</ul>
</li>
</ul>
<h2>Submission Guidelines</h2>
<p>
Participants should submit their predicted phoneme sequences on the test set by the deadline (July 27, 2025). Submissions will be automatically evaluated using the official scoring scripts.
</p>
<h2>Evaluation Metrics</h2>
<p>
Systems will be evaluated based on phoneme error rates (PER) computed over the test set, measuring accuracy in detecting and localizing mispronunciations.
</p>
<h2>Contact and Support</h2>
<p>
For inquiries and support, reach out to the task coordinators at
<a href="mailto:support@iqraeval.org">support@iqraeval.org</a>.
</p>
</div>
</body>
</html>
|