File size: 7,787 Bytes
148368a
4add227
c3ec9ca
4add227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb75d3d
4add227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3ec9ca
 
4add227
 
 
 
 
 
18d0f01
4add227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3ec9ca
4add227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3ec9ca
148368a
c3ec9ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width" />
<title>Iqra’Eval Shared Task</title>
<style>
  /* Color Palette */
  :root {
    --navy-blue: #001f4d;
    --coral: #ff6f61;
    --light-gray: #f5f7fa;
    --text-dark: #222;
  }

  body {
    font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
    background-color: var(--light-gray);
    color: var(--text-dark);
    margin: 20px;
    line-height: 1.6;
  }

  h1, h2, h3 {
    color: var(--navy-blue);
    font-weight: 700;
    margin-top: 1.2em;
  }

  h1 {
    text-align: center;
    font-size: 2.8rem;
    margin-bottom: 0.3em;
  }

  h2 {
    border-bottom: 3px solid var(--coral);
    padding-bottom: 0.3em;
  }

  h3 {
    color: var(--coral);
    margin-top: 1em;
  }

  p {
    max-width: 900px;
    margin: 0.8em auto;
  }

  strong {
    color: var(--navy-blue);
  }

  ul {
    max-width: 900px;
    margin: 0.5em auto 1.5em auto;
    padding-left: 1.2em;
  }

  ul li {
    margin: 0.4em 0;
  }

  code {
    background-color: #eef4f8;
    color: var(--navy-blue);
    padding: 2px 6px;
    border-radius: 4px;
    font-family: Consolas, monospace;
    font-size: 0.9em;
  }

  pre {
    max-width: 900px;
    background-color: #eef4f8;
    color: var(--navy-blue);
    padding: 1em;
    border-radius: 8px;
    overflow-x: auto;
    font-family: Consolas, monospace;
    font-size: 0.95em;
    margin: 0.8em auto;
  }

  a {
    color: var(--coral);
    text-decoration: none;
  }

  a:hover {
    text-decoration: underline;
  }

  .card {
    max-width: 1200px;
    background: white;
    margin: 0 auto 40px auto;
    padding: 2em 2.5em;
    box-shadow: 0 4px 14px rgba(0,0,0,0.1);
    border-radius: 12px;
  }

  /* Centering images and captions */
  div img {
    display: block;
    margin: 20px auto;
    max-width: 100%;
    height: auto;
    border-radius: 8px;
    box-shadow: 0 4px 8px rgba(0,31,77,0.15);
  }

  .centered p {
    text-align: center;
    font-style: italic;
    color: var(--navy-blue);
    margin-top: 0.4em;
  }

  .highlight {
    color: var(--coral);
    font-weight: 700;
  }

  /* Lists inside paragraphs */
  p > ul {
    margin-top: 0.3em;
  }

</style>
</head>
<body>
<div class="card">
    <h1>Iqra’Eval Shared Task</h1>

    <div>
      <img src="IqraEval.png" alt="IqraEval Logo" />
    </div>

    <!-- Overview Section -->
    <h2>Overview</h2>
    <p>
        <strong>Iqra'Eval</strong> is a shared task aimed at advancing <strong>automatic assessment of Qur’anic recitation pronunciation</strong> by leveraging computational methods to detect and diagnose pronunciation errors. The focus on Qur’anic recitation provides a standardized and well-defined context for evaluating Modern Standard Arabic (MSA) pronunciation.
    </p>
    <p>
        Participants will develop systems capable of detecting mispronunciations (e.g., substitution, deletion, or insertion of phonemes).
    </p>

    <!-- Timeline Section -->
    <h2>Timeline</h2>
    <ul>
        <li><strong>June 1, 2025</strong>: Official announcement of the shared task</li>
        <li><strong>June 10, 2025</strong>: Release of training data, development set (QuranMB), phonetizer script, and baseline systems</li>
        <li><strong>July 24, 2025</strong>: Registration deadline and release of test data</li>
        <li><strong>July 27, 2025</strong>: End of evaluation cycle (test set submission closes)</li>
        <li><strong>July 30, 2025</strong>: Final results released</li>
        <li><strong>August 15, 2025</strong>: System description paper submissions due</li>
        <li><strong>August 22, 2025</strong>: Notification of acceptance</li>
        <li><strong>September 5, 2025</strong>: Camera-ready versions due</li>
    </ul>

    <!-- Task Description -->
    <h2>Task Description: Quranic Mispronunciation Detection System</h2>
    <p>
      The aim is to design a model to detect and provide detailed feedback on mispronunciations in Quranic recitations. 
      Users read aloud vowelized Quranic verses; this model predicts the phoneme sequence uttered by the speaker, which may contain mispronunciations. 
      Models are evaluated on the <strong>QuranMB.v2</strong> dataset, which contains human‐annotated mispronunciations.
    </p>

    <div class="centered">
      <img src="task.png" alt="System Overview" />
      <p>Figure: Overview of the Mispronunciation Detection Workflow</p>
    </div>

    <h3>1. Read the Verse</h3>
    <p>
      The user is shown a <strong>Reference Verse</strong> (What should have been said) in Arabic script along with its corresponding <strong>Reference Phoneme Sequence</strong>.
    </p>
    <p><strong>Example:</strong></p>
    <ul>
      <li><strong>Arabic:</strong> إِنَّ الصَّفَا وَالْمَرْوَةَ مِنْ شَعَائِرِ اللَّهِ</li>
      <li>
        <strong>Phoneme:</strong> 
        <code>&lt; i n n a SS A f aa w a l m a r w a t a m i n $ a E a a &lt; i r i l l a h i</code>
      </li>
    </ul>

    <h3>2. Save Recording</h3>
    <p>
      The user recites the verse aloud; the system captures and stores the audio waveform for subsequent analysis.
    </p>

    <h3>3. Mispronunciation Detection</h3>
    <p>
      The stored audio is fed into a <strong>Mispronunciation Detection Model</strong>. 
      This model predicts the phoneme sequence uttered by the speaker, which may contain mispronunciations.
    </p>
    <p><strong>Example of Mispronunciation:</strong></p>
    <ul>
      <li><strong>Reference Phoneme Sequence (What should have been said):</strong> <code>&lt; i n n a SS A f aa w a l m a r w a t a m i n $ a E a a &lt; i r i l l a h i</code></li>
      <li><strong>Model Phoneme Prediction (What is predicted):</strong> <code>&lt; i n n a SS A f aa w a l m a r w a t a m i n s a E a a &lt; i r u l l a h i</code></li>
      <li>
        <strong>Annotated Phoneme Sequence (What is said):</strong> 
        <code>&lt; i n n a SS A f aa w a l m a r w <span class="highlight">s</span> a E a a &lt; i <span class="highlight">r u</span> l l a h i</code>
      </li>
    </ul>
    <p>
      In this case, the phoneme <code>$</code> was mispronounced as <code>s</code>, and <code>i</code> was mispronounced as <code>u</code>.
    </p>
    <p>
      The annotated phoneme sequence indicates that the phoneme <code>ta</code> was omitted, but the model failed to detect it.
    </p>

    <h2>Training Dataset: Description</h2>
    <p>
        All data are hosted on Hugging Face. Two main splits are provided:
    </p>
    <ul>
        <li>
            <strong>Training set:</strong> 79 hours of Modern Standard Arabic (MSA) Quran recitations (5,167 audio files)
        </li>
        <li>
            <strong>Evaluation set:</strong> QuranMB.v2 dataset with phoneme-level mispronunciation annotations, which includes:
            <ul>
                <li>QuranMB-Train: 9 hours (1,218 files) for development</li>
                <li>QuranMB-Test: 8 hours (1,018 files) for evaluation</li>
            </ul>
        </li>
    </ul>

    <h2>Submission Guidelines</h2>
    <p>
      Participants should submit their predicted phoneme sequences on the test set by the deadline (July 27, 2025). Submissions will be automatically evaluated using the official scoring scripts.
    </p>

    <h2>Evaluation Metrics</h2>
    <p>
      Systems will be evaluated based on phoneme error rates (PER) computed over the test set, measuring accuracy in detecting and localizing mispronunciations.
    </p>

    <h2>Contact and Support</h2>
    <p>
      For inquiries and support, reach out to the task coordinators at 
      <a href="mailto:support@iqraeval.org">support@iqraeval.org</a>.
    </p>

</div>
</body>
</html>